Correlation between Lipid Profile and Acne Vulgaris

Firas Fakhir Altameemi¹

¹ Department of Dermatology & Venereology, Alsadr teaching hospital, Basra, Iraq

Correspondence to:
Firas Fakhir Altameemi; Basra, Iraq; Email: uday_sajad@yahoo.com

Article History
Received: 24 September 2020
Reviewed & Revised: 26/September/2020 to 25/October/2020
Accepted: 25 October 2020
E-publication: 02 November 2020
P-publication: November - December 2020

Citation
Firas Fakhir Altameemi. Correlation between Lipid Profile and Acne Vulgaris. Medical Science, 2020, 24(106), 4026-4030

Publication License
This work is licensed under a Creative Commons Attribution 4.0 International License.

General Note
Article is recommended to print as color digital version in recycled paper.

ABSTRACT

Objective: assessment of lipid profile in acne patients and its relationship with acne occurrence and severity. Methods: A case-control study carried out in a private outpatient clinic during the period from March 2018 to June 2019, in the department of dermatology, Basrah, Iraq. Results: The study included 124 subjects divided into two groups, 62 patients with acne and 62 healthy matched control (there was no significant difference between control and acne groups in their age and gender). Serum TC and LDL was significantly higher in acne patients, while both HDL and TG did not differ significantly between both groups. Mean HDL was significantly higher in acne female patients compared to female control, while the rest of the variables did not show significant difference. There were no significant differences between various lipid parameters according to increased severity of acne. Conclusions: The current work highlights some important lipid abnormalities in acne patients which involved HDL mostly, while no association with acne severity was noted in the present work.

Keywords: Minocycline, Acne, Therapy
1. INTRODUCTION
Acne vulgaris considered the most prevalent disease that have significant effect on adolescents globally, acne vulgaris is most frequent among adolescents and young adults but is not limited to these ages (Wolkenstein et al., 2018; AlSohaimi, 2020). The preadolescent represent the most important period in which acne appeared, which late disappear in the third decade, but may persist into adulthood or develop de novo in adulthood (Goulden et al., 1997). The prevalence of acne decreases with increasing age (Collier et al., 2008a).

Acne vulgaris is an inflammatory disease that affect the follicles of the fair and sebaceous gland, this disease involved multiple etiological causes ranging from host, hormonal, infections, immune system overactivation, genetic and dietary causes (O’Neill and Gallo, 2018).

Increased body of evidence suggest that alteration in lipid profile is associated with acne in terms of occurrence or severity, we performed this study (which is the first to our knowledge in Iraq) to assess such relationship.

2. PATIENTS AND METHODS
Study design and setting
A case-control study carried out in a private outpatient clinic during the period from March 2018 to June 2019, in the department of dermatology, Basrah, Iraq.

The study included 62 participants who had untreated acne transfer from the department of dermatology, in Alsadr teaching hospital. The patients were divided to four groups in accordance with acne severity by Global Acne Grading System (GAGS) (Doshi et al., 1997). The four groups are based on the severity of disease: none = 0, mild = 1 – 18, moderate = 19 – 30, severe ≥31 (Doshi et al., 1997).

Inclusion criteria
Untreated acne, and age equal to or above 12 years (patients aged below 18 years a parent or legal guardian provided written informed consent).

Exclusion criteria
Refuse to enter the study, pregnancy or lactating women, use of contraceptive methods, use of drugs that have effect on blood lipid, use of isotretinoin, and diseases that affect lipid metabolism.

Participants
After obtaining written informed permission from the patient, full history was taken related to (age, sex, and severity of the disease).

Laboratory analysis
Venous blood sample obtained from both cases and control, to measure serum level of cholesterol (TC), triglyceride (TG), low-density lipoprotein (LDL), and high-density lipoprotein (HDL). The measurement of serum levels was based on enzyme linked (ELISA), except for LDL which was estimated using Friedewald’s formula:

\[\text{LDL (mg/dL)} = \text{TC (mg/dL)} - \text{HDL (mg/dL)} - \frac{\text{TG (mg/dL)}}{5} \]

Statistical analysis
Data were analyzed using the Statistical Package for Social Sciences (SPSS, version 22). One way ANOVA or independent t-test used to assess the differences in means in three of two groups respectively. The level of significance was ≤ 0.05.

3. RESULTS
The study included 124 subjects divided into two groups, 62 patients with acne and 62 healthy matched control (there was no significant difference between control and acne groups in their age and gender). Serum TC and LDL was significantly higher in acne patients, while both HDL and TG did not differ significantly between both groups, as illustrated in table 1.
Table 1: Assessment of demographic and lipid parameters according to study group

<table>
<thead>
<tr>
<th>Variables</th>
<th>Control</th>
<th>Acne</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>62</td>
<td>62</td>
<td>-</td>
</tr>
<tr>
<td>Age, (years)</td>
<td>24.9 ± 6.1</td>
<td>26.8 ± 6.8</td>
<td>0.101</td>
</tr>
<tr>
<td>Female, n (%)</td>
<td>43 (69.4%)</td>
<td>40 (64.5%)</td>
<td>0.567</td>
</tr>
<tr>
<td>TC (mg/dL)</td>
<td>130.5 ± 18.2</td>
<td>137.7 ± 19.9</td>
<td>0.040</td>
</tr>
<tr>
<td>LDL (mg/dL)</td>
<td>73.6 ± 17.5</td>
<td>77.5 ± 16.5</td>
<td>0.211</td>
</tr>
<tr>
<td>HDL (mg/dL)</td>
<td>37.9 ± 7.8</td>
<td>41.5 ± 7.6</td>
<td>0.010</td>
</tr>
<tr>
<td>TG (mg/dL)</td>
<td>95.4 ± 34.5</td>
<td>93.7 ± 37.3</td>
<td>0.797</td>
</tr>
</tbody>
</table>

Mean HDL was significantly higher in acne female patients compared to female control, while the rest of the variables did not show significant difference as illustrated in table 2.

Table 2: Assessment of lipid parameters according to gender

<table>
<thead>
<tr>
<th>Variables</th>
<th>Female</th>
<th>Acne</th>
<th>p-value</th>
<th>Male</th>
<th>Acne</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>43</td>
<td>40</td>
<td>-</td>
<td>19</td>
<td>22</td>
<td>-</td>
</tr>
<tr>
<td>TC (mg/dL)</td>
<td>130.5 ± 19.4</td>
<td>137.8 ± 20.9</td>
<td>0.100</td>
<td>130.7 ± 15.7</td>
<td>137.4 ± 18.3</td>
<td>0.225</td>
</tr>
<tr>
<td>LDL (mg/dL)</td>
<td>75.8 ± 17.9</td>
<td>78.7 ± 16.5</td>
<td>0.456</td>
<td>68.6 ± 15.8</td>
<td>75.2 ± 16.5</td>
<td>0.198</td>
</tr>
<tr>
<td>HDL (mg/dL)</td>
<td>36.3 ± 7.3</td>
<td>40.3 ± 7.8</td>
<td>0.017</td>
<td>41.5 ± 7.8</td>
<td>43.6 ± 6.8</td>
<td>0.360</td>
</tr>
<tr>
<td>TG (mg/dL)</td>
<td>91.9 ± 34.4</td>
<td>94.3 ± 39.7</td>
<td>0.770</td>
<td>103.2 ± 34.1</td>
<td>92.6 ± 33.5</td>
<td>0.324</td>
</tr>
</tbody>
</table>

Younger participants (<25 years) with acne had significantly higher TC levels compared normal control, the rest of the variables did not show significant difference between both groups, as illustrated in table 3.

Table 3: Assessment of lipid parameters according to age

<table>
<thead>
<tr>
<th>Variables</th>
<th><25 years</th>
<th>Acne</th>
<th>p-value</th>
<th>≥25 years</th>
<th>Acne</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>28</td>
<td>25</td>
<td>-</td>
<td>28</td>
<td>25</td>
<td>-</td>
</tr>
<tr>
<td>TC (mg/dL)</td>
<td>130.0 ± 18.4</td>
<td>140.9 ± 18.7</td>
<td>0.037</td>
<td>131.0 ± 18.3</td>
<td>135.5 ± 20.7</td>
<td>0.344</td>
</tr>
<tr>
<td>LDL (mg/dL)</td>
<td>73.4 ± 19.1</td>
<td>80.0 ± 14.5</td>
<td>0.167</td>
<td>73.8 ± 16.3</td>
<td>75.8 ± 17.6</td>
<td>0.634</td>
</tr>
<tr>
<td>HDL (mg/dL)</td>
<td>37.9 ± 7.7</td>
<td>42.1 ± 8.1</td>
<td>0.059</td>
<td>37.8 ± 8.0</td>
<td>41.0 ± 7.3</td>
<td>0.080</td>
</tr>
<tr>
<td>TG (mg/dL)</td>
<td>93.3 ± 33.6</td>
<td>94.1 ± 37.8</td>
<td>0.930</td>
<td>97.1 ± 35.5</td>
<td>93.4 ± 37.6</td>
<td>0.673</td>
</tr>
</tbody>
</table>

There were no significant differences between various lipid parameters according to increased severity of acne, as illustrated in table 4.

Table 4: Assessment of lipid parameters according to the severity of acne

<table>
<thead>
<tr>
<th>Variables</th>
<th>Acne severity</th>
<th>Mild</th>
<th>Moderate</th>
<th>severe</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>16</td>
<td>17</td>
<td>29</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>TC (mg/dL)</td>
<td>140.3±19.2</td>
<td>136.7±19.5</td>
<td>136.8±21.0</td>
<td>0.838</td>
<td></td>
</tr>
<tr>
<td>LDL (mg/dL)</td>
<td>83.4±15.4</td>
<td>75.0±19.4</td>
<td>75.6±14.8</td>
<td>0.245</td>
<td></td>
</tr>
<tr>
<td>HDL (mg/dL)</td>
<td>40.5±7.2</td>
<td>41.7±7.0</td>
<td>41.9±8.3</td>
<td>0.842</td>
<td></td>
</tr>
<tr>
<td>TG (mg/dL)</td>
<td>81.7±32.6</td>
<td>99.8±41.7</td>
<td>96.7±36.8</td>
<td>0.321</td>
<td></td>
</tr>
</tbody>
</table>
4. DISCUSSION
In the present study female showed higher rates for having acne compared to males (64.5% is female), which is consistence with several other studies (Collier et al., 2008b, Dréno, 2015, El-Hamd et al., 2017), while in other (Li et al., 2017) males showed higher prevalence than females. These variations could be attributed to differences in skin care, life-style, and genetic variation that affect androgen levels (Li et al., 2017). Few other studies found no difference in the distribution of females and males (Karciauskiene et al., 2014, Sharma et al., 2017).

In the current work in both female and male; serum cholesterol and LDL were higher in acne patients compared to control, however it did not reach statistical significance level (p-value >0.5), while HDL was significantly higher in acne patients compared to control in females but it did not show significance difference in males. These findings were in agreement with another study (El-Akawi et al., 2007) in which only HDL showed significant level, while both cholesterol and LDL did not significance levels. While in another study (Sobhan et al., 2020) HDL was not significantly different in contrary to our findings, while cholesterol was significantly higher in acne patients compared to control in both gender (Sobhan et al., 2020). While in a Chinese study they authors reported no significant differences in lipid profile between acne and control group (Jiang et al., 2015).

In term of severity of acne, no association between increased level of acne severity with elevated levels of various lipid profile, which was in agreement with other studies (Sobhan et al., 2020), while in some studies change in triglyceride, HDL and LDL in both females and males (El-Akawi et al., 2007, Jiang et al., 2015).

5. CONCLUSION
The current work highlights some important lipid abnormalities in acne patients which involved HDL mostly, while no association with acne severity was noted in the present work.

Author contribution
Firas Fakhir Altameemi: Conception and design of the work, the acquisition, analysis, and interpretation of data for the work, and Drafting the work.

Funding
This study was funded by authors only

Conflict of Interest
The authors declare that they have no conflict of interest.

Informed consent
Written informed consent was obtained from all individual participants included in the study. Additional informed consent was obtained from all individual participants for whom identifying information is included in this manuscript.
Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards (Code: 2019/C084).

Data and materials availability

All data associated with this study are available upon request to the corresponding author.

Peer-review

External peer-review was done through double-blind method.

REFERENCES AND NOTES