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ABSTRACT 

The performed research focused on analyzing the herbicidal properties of several 

new analogs of 6-(5-aryl-substituted-1-pyrazolyl)-2-picolinic acid using three 

different methods, namely partial least squares, PLS analysis, the combinatorial 

protocol in multiple linear regression, CP-MLR and the non-parametric Fujita-

Ban, FB technique. The FB method employs the principle of additivity, which 

suggests that substituents contribute to the activity of the parent molecule. The 

study investigated the impact of different substituents, positioned in various 

ways, on the activity of the analogs. The most active compound in the series 

exhibited a pattern of substituents exhibiting positive contribution relative to the 

parent molecule. The CP-MLR technique employs statistically derived 

quantitative structure-activity relationship, QSAR models to elucidate the 

herbicidal action of congeners. In this procedure, three-dimensional descriptors 

such as asphericity, ASP, the second component accessibility directional WHIM 

index weighted by atomic masses, E2m, and the maximum autocorrelation of lag 

2 weighted by atomic masses, R2m+ were identified as the most important. 

Furthermore, external validation of the models was performed using data 

generated from the test-set, and the models demonstrated their capacity for 

forecasting through applicability domain, AD study. These findings can be 

helpful in identifying potential analogs of the series. The dominance of the 

descriptors discovered by the CP-MLR investigation was corroborated by PLS 

analysis, and the computed activity values were shown to agree with observed 

ones using the FB, CP-MLR, and the PLS analyses. 
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1. INTRODUCTION 

Herbicides are crucial in controlling unwanted weeds that grow with crops, thereby enhancing agricultural yield. However, the 

extensive and regular use of certain herbicides can lead to the development of weed resistance, necessitating the development of 

new herbicides that are less toxic, have minimal resistance, and have higher efficacy (Qu et al., 2021). Synthetic auxin herbicides, 

which have different structural moieties, are significant compounds with diverse modes of action and explicit binding sites in target 

proteins (Busi et al., 2018). Thus, these chemicals hold great potential for the development of new herbicides. Recently, herbicides 

containing the pyrazole moiety have demonstrated substantial herbicidal efficacy (Havrylyuk et al., 2016; Huang et al., 2017; Wu et 

al., 2012; Zhang et al., 2022).  

Researchers have been exploring new chemicals, such as 4-amino-3,5-dichloro-6-pyrazolyl-2-picolinic acids with a phenyl-

substituted pyrazole replacing the chlorine atom at position six of the picloram herbicide, following the discovery of 6-aryl-2-

picolinate herbicides (Feng et al., 2023). The study involves synthesizing 33 new herbicidal compounds and evaluating their 

inhibitory activity, IC50, against Arabidopsis thaliana root growth. The objective of present communication is to establish the 

correlations between IC50 and chemometric molecular descriptors for a series of 33 compounds. The approach is called as the 

quantitative structure-activity relationship, QSAR study. The activity being the dependent variable is quantitatively expressed in 

terms of independent variables, or descriptors, Xis, using the multiple linear regression analysis, MLR.  

The study utilizes an interpolative approach to calculate the activity values of all compounds in the series and compare them to 

their observed values. The observed and computed activities must match. The extrapolative nature of a QSAR study is beneficial in 

predicting the activities of new potential compounds beyond the synthesized compounds in the series, provided that the mode of 

action of new analogs remains similar to that of compounds in the parent series. The prediction, therefore, helps to reduce both the 

time and cost of exploring additional compounds in the series. The independent descriptors participated in a valid correlation 

Equation have the ability to reflect the nature of the forces that are operative during interaction with the receptor site(s). As a result, 

such information can assist in formulating a plausible molecular mechanism of action. 

 

2. MATERIAL AND METHODOLOGY 

The present study provides a report on the herbicidal activity values of 6-(5-aryl-substituted-1-pyrazolyl)-2-picolinic acid 

derivatives, expressed as IC50 (μmol L-1), determined by measuring the concentration required to elicit 50% of the desired effect 

against the growth of A. thaliana roots. The estimates of herbicidal activity values for the compounds were obtained from published 

works (Feng et al., 2023). However, for present study, the activity estimate of each compound is expressed on a molar basis as -

logIC50 (M) or as pIC50 (M). Table 1 presents the compounds and their corresponding pIC50 (M) values, while Figure 1 illustrates 

the general molecular structure of these congeners. 
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Figure 1 The general structure of 6-(5-aryl-substituted-1-pyrazolyl)-2-picolinic acid derivatives. 

 

 

 

 

 



ANALYSIS ARTICLE | OPEN ACCESS   

Drug Discovery 17, e34dd1959 (2023)                                                                                                                                                           3 of 11 

Table 1 Observed and modeled herbicidal activities of novel derivatives of 6-(5-aryl-substituted-1-pyrazolyl)-2-picolinic acid 

(Figure 1) 

Compd R1 R2 
Obsd 

pIC50 (M) 

Calcd pIC50 (M) 

FB Eq (2) PLS 

1 Me 4-Me 5.67 6.38 5.89 6.16 

2 CHF2 4-Me 7.16 6.23 6.35 6.48 

3 CF3 4-Me 5.94 6.17 5.74 6.01 

4 Me 4-F 5.84 5.86 5.58 5.75 

5 CHF2 4-F 5.66 5.71 5.95 5.89 

6 CF3 4-F 5.73 5.66 5.47 5.46 

7 Me 4-Cl 7.41 6.56 6.05 6.04 

8 CHF2 4-Cl 5.85 6.41 5.65 5.78 

9 CF3 4-Cl 6.07 6.36 5.30 5.62 

10 Me 3-Cl 4.60 5.07 4.95 5.03 

11 CHF2 3-Cl 5.15 4.92 5.03 5.02 

12 CF3 3-Cl 5.12 4.87 5.17 5.10 

13 Me 4-Br 6.05 6.03 6.04 5.94 

14 CHF2 4-Br 5.91 5.88 5.89 5.94 

15 CF3 4-Br 5.77 5.82 5.57 5.74 

16 Me 2-Br 6.73 6.47 6.67 6.69 

17 CHF2 2-Br 6.18 6.32 6.74 6.50 

18 CF3 2-Br 6.14 6.27 6.30 5.94 

19 Me 4-i-Pr 4.69 4.62 4.70 4.77 

20 CHF2 4-i-Pr 4.44 4.47 4.43 4.51 

21 CF3 4-i-Pr 4.36 4.41 4.71 4.58 

22 Me 3,4-Cl2 5.17 5.29 5.28 5.56 

23 CHF2 3,4-Cl2 5.19 5.14 5.53 5.39 

24 CF3 3,4-Cl2 5.15 5.09 4.95 5.03 

25 Me 4-Et 5.87 5.75 5.57 5.90 

26 CHF2 4-Et 5.38 5.60 5.23 5.29 

27 CF3 4-Et 5.65 5.55 5.86 5.56 

28 Me 4-n-Pr 4.47 4.60 4.61 4.31 

29 CHF2 4-n-Pr 4.35 4.45 4.38 4.37 

30 CF3 4-n-Pr 4.64 4.40 4.28 4.19 

31 Me 4-t-Bu 4.56 4.43 4.53 4.48 

32 CHF2 4-t-Bu 4.14 4.28 4.03 4.24 

33 CF3 4-t-Bu 4.24 4.22 4.08 4.08 

 

Fujita-Ban analysis 

The Fujita-Ban analysis is a non-parametric method Fujita and Ban, (1971) and is based on the additive principle of substituent's 

contribution of activity to the parent moiety. In this method, pIC50 is considered a free energy-related parameter that is additive in 

nature. The analysis is limited to the parent data-set, but it identifies the substituents that have a positive impact on activity relative 

to the parent compound. To expand the scope of Fujita-Ban analysis, a multiple linear regression, MLR analysis was performed to 

establish important correlations between the molecular descriptors and activity profiles of the compounds under investigation. The 

models generated from the MLR analysis have the potential to reveal new candidate compounds outside of the named series, as 

well as offer insights into the potential modes of action of these compounds at different receptor sites. 

The MLR analysis is a multi-step process that involves computing molecular descriptors and filtering out only the important 

ones. These important descriptors are then correlated with activity values to develop statistically significant models. The models are 

validated both internally and externally. Finally, the molecular descriptors that are shared in the developed models may be 
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interpreted in terms of various binding forces, including covalent bonding, ionic (electrostatic) interactions, ion-dipole and dipole-

dipole interactions, hydrogen bonding, charge-transfer interactions, hydrophobic interactions, halogen bonding, van der Waals 

interactions, etc. The following sections provide a detailed discussion of each step involved in the MLR analysis. 

 

Calculations of molecular descriptors 

First, the structures of all 33 compounds were drawn in 2D ChemDraw then converted into 3D modules. These modules underwent 

an energy minimization process in MOPAC, using the AM1 procedure for closed-shell systems, to ensure a well-defined conformer 

relationship among the compounds. The DRAGON software was used to compute the molecular descriptors of these compounds. 

The software computes hundreds of molecular descriptors pertaining to 0D, 1D, 2D, and 3D classes. After elimination of inter-

correlated descriptors, a total number of 434 descriptors for 0D to 2D classes and 648 descriptors for the 3D class were saved in two 

separate files. 

 

Development of regression models 

As the descriptors have varying magnitudes, the regression coefficients and intercept would reflect this imbalance. The descriptors 

of the data-set were scaled between 0 and 1 to assign equal weights in a model, preventing bias against unscaled descriptors with 

higher or lower values (Golbraikh and Tropsha, 2002). The combinatorial protocol in a multiple linear regression, CP-MLR 

computational process was used to develop QSAR models with scaled descriptors (Prabhakar, 2003). When performing a QSAR 

analysis, it is crucial to select the most significant descriptors from the multivariate space to obtain meaningful models. The CP-

MLR is one of the many techniques available that uses a filter-based variable selection method to simplify the selection process and 

generate unique and statistically significant models. Our previous publications (Sharma et al., 2010; Sharma et al., 2011; Sharma et 

al., 2013; Singh, 2013) provide detailed information on the strategy and its applications. 

The CP-MLR analysis computation software has four filters implanted in it. The first filter allows only those descriptors with 

inter-descriptor correlations equal to or greater than 0.79 to be entered. The second filter regulates the entry of descriptors into a 

regression model by setting a threshold for their coefficient's t-values at 2.0. The third filter makes it possible to compare models 

with different descriptor counts using r-bar, which is the square root of the adjusted multiple correlation coefficient of the model 

Equation. The fourth filter measures the internal robustness of the model using the leave-one-out index Q2LOO, where 0.3 ≤ 

Q2LOO ≤ 1.0. The r-bar value of the prior optimum model (third filter) was enhanced by increasing the number of useful 

descriptors, which became the new upper limit for subsequent model creation. Repeated randomization of the activity profile was 

done to test for chance correlations in each cross-validated model (So and Karplus, 1997; Prabhakar et al., 2004).  

Every model was put through 100 simulation runs with random activity for this. To describe the percent chance correlation of 

the model under discussion, the scrambled activity models with regression statistics better than or equal to those of the original 

activity model were counted. To evaluate the statistical significance of a model, the multiple correlation coefficient, r, standard 

deviation, s and F-ratio between the variances of calculated to observed activities were used. The F-ratio is represented as Fn, n-k-1, 

where n is the number of compounds and k is the number of independent descriptors, and is compared with critical F-values. The 

leave-one-out and leave-five-out procedures were used to determine the internal robustness of the model. The resulting statistical 

indices Q2LOO and Q2L5O, greater than 0.5, indicate a reliable model. Additionally, the Kubinyi function, FIT Kubinyi, (1994), 

Friedman's lack of fit, LOF Friedman, (1990), and Akaike's information criteria, AIC Akaike, (1973), Akaike, (1974) were calculated 

to evaluate the best model.  

For external validation of the developed models, a test-set was chosen, containing almost 24% of the total population, while the 

remaining compounds were included in the training-set. The r2Test indices were determined accordingly. The selection of the 

compounds for the test-set was made through SYSTAT using the single linkage hierarchical cluster procedure, which involved the 

Euclidean distances of the activity values. A cluster tree was generated, and the test-set compounds were selected in such a way as 

to keep them at the maximum possible distance from each other. The normalized Euclidean distances were computed to join the 

objects of the cluster, and the single linkage clustering procedure was followed since it generates long clusters and provides 

different object intervals to choose from. 

 

Setting the applicability domain 

To ensure that all compounds of a given series fall within the applicability domain, AD, a study was performed to identify any 

“outlier” or structurally influential compounds. This is crucial in accurately predicting new analogs of the series. The AD is 

determined using the Williams plot, which plots standardized residuals against the leverage values of all compounds in the 
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training-domain (Gramatica, 2007; Eriksson et al., 2003). The domain is established within a plot by considering a measure (±β×s.d.) 

and the leverage threshold value, h*. The value of h* is specified at 3(k + 1)/n, where k is the number of independent variables of the 

model under consideration and n is the number of compounds in the training-set. The figure may then be used to visually identify 

the Y-outlier or response outlier and the X-outlier or structurally influential compound. When a compound's leverage value is less 

than the threshold value h*, the prediction becomes trustworthy, and the calculated and observed activity values of the training-set 

chemicals agree. However, when the leverage value exceeds h*, the forecast becomes unreliable. 

 

The PLS regression analysis 

The partial least squares, PLS linear regression is a powerful modeling technique that addresses the challenges of multiple linear 

regression, MLR when working with incomplete, noisy, and collinear variables in both the descriptor matrix, X and the activity 

profile matrix, Y. This technique utilizes a small number of latent variables, LVs known as PLS components, which are linear 

combinations of the original variables. Additionally, the Y matrix is used to identify the most appropriate LVs in X for predicting Y 

variables. Before applying the PLS approach, descriptors are auto-scaled, and data is mean-centered to ensure that the scaling of X 

is consistent despite varying magnitudes. This critical step is necessary since preprocessed descriptors may have different orders of 

magnitude. To determine the optimal number of LVs, cross-validation was carried out by setting aside a portion of the calibration 

data for prediction. The process was repeated for each sample, with the predicted values of the excluded data compared to the 

observed values using the predicted residual sum of squares, PRESS. Every time a new LV was added to the model, PRESS was 

calculated. 

 

3. RESULTS AND DISCUSSION 

In the Fujita-Ban analysis, compound 1 from Table 1 was considered as the parent compound. To explore the impact of substituents 

at R1 and three different positions (2-, 3-, and 4-) of R2, a matrix was formulated consisting of 33 compounds in the series. The 

matrix was analyzed using the MRA, and the contributions of the parent compound, µ0 and different substituents are listed in 

(Table 2). The data within parentheses are the 90% confidence intervals. 

 

Table 2 The herbicidal activity contributions of substituents and parent moiety (Figure 1 for general structure)  

Substituent Contribution 

R1 
CF3 -0.205 (±0.303) 

CHF2 -0.151 (±0.303) 

2- R2 Br 0.125 (±0.821) 

3- R2 Cl -1.275 (±0.580) 

4- R2 

Br -0.350 (±0.580) 

Cl 0.186 (±0.580) 

Et -0.628 (±0.580) 

F -0.516 (±0.580) 

H -0.033 (±0.821) 

i-Pr -1.762 (±0.580) 

n-Pr -1.775 (±0.580) 

t-Bu -1.949 (±0.580) 

Parent 

contribution, μ0 
6.378 (±0.446) 

  

Additionally, the statistical parameters calculated from the study are given below: 

    n = 33, r = 0.925, s = 0.411, F(13, 19) = 9.370 

The r2 value accounted for 86% of variance in the observed activity profiles while F-value remained significant at 99% level (F13, 

19(0.01) = 3.249). The calculated activities closely matching the observed ones are shown in (Table 1). For convenience, a plot 

comparing the calculated and observed pIC50s is included in (Figure 2A).  
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Figure 2 The plot between observed and calculated pIC50 values, Fujita-Ban analysis; A, regression Equation (2); B and PLS 

analysis; C. 

 

According to Table 1, the parent compound 1 has a substituent pattern of Me at R1, H at 2-R2, H at 3-R2, and Me at 4-R2. The 

substituents CF3 and CHF2 at R1 and Cl at 3-R2 have negative contribution to activity, which means that Me and H, in that order, 

are preferred. On the other hand, the substituents Br and Cl at positions 2-R2 and 4-R2, respectively, are desirable since they have 

positive activity contribution. Such features are observed in compound 7 (Table 1), which is the highest active analog of the series. 

The CP-MLR method used next to correlate the herbicidal capabilities of compounds in Table 1 with 3D molecular descriptors. 

Initially, 648 scaled 3D descriptors were used for this purpose. Attempts were made to associate the activity profiles of the 

substances using 0D to 2D class descriptors. However, such descriptors were unacceptable to address the herbicidal actions of 

compounds as they resulted in poor models when compared to the 3D descriptors. 

As a result, 3D descriptors were employed to obtain models in one descriptor, two descriptors, and three descriptor increments. 

A test-set comprising of eight compounds (6, 7, 9, 14, 20, 22, 30 and 32; Table 1) was considered to validate the developed models.  

The models involving three descriptors remained statistically significant in explaining the variance in observed activities of the 

congeners. To examine prediction models, compounds from Table 1 were used to correlate their herbicidal activity in terms of 

scaled 3D descriptors. A total of nine models were obtained, considering r-bar value of 0.915. These models come with the 

necessary statistical parameters. They are composed of 16 shared descriptors, which are listed in Table 3, with their name, class, 

physical meaning, average regression coefficient and incidence.  

 

Table 3 Identified descriptors along with their class, physical meaning, average regression coefficient and incidence, in modeling of 

herbicidal activity 

No     Name Class Physical meaning 

Avg reg 

coefficient 

(incidence) 

1 ASP Geometrical Represents asphericity -2.041 (1) 

2 RDF020m RDF Radial distribution function-2.0/weighted by atomic masses 0.925 (1) 

3 Mor22u 3D-MoRSE 3D-MoRSE-signal 22/unweighted -1.617 (1) 

4 Mor23u 3D-MoRSE 3D-MoRSE-signal 23/unweighted 2.244 (1) 

5 Mor12m 3D-MoRSE 3D-MoRSE-signal 23/weighted by atomic masses 1.233 (1) 

6 Mor15m 3D-MoRSE 3D-MoRSE-signal 15/weighted by atomic masses 1.821 (2) 

7 Mor24m 3D-MoRSE 3D-MoRSE-signal 24/weighted by atomic masses 1.198 (1) 

8 Mor27m 3D-MoRSE 3D-MoRSE-signal 27/ weighted by atomic masses -1.553 (1) 

9 Mor22e 3D-MoRSE 3D-MoRSE-signal 22/weighted by atomic Sanderson electronegativities -1.515 (4) 

10 Mor23e 3D-MoRSE 3D-MoRSE-signal 23/weighted by atomic Sanderson electronegativities 2.189 (1) 

11 E2m WHIM 2nd component accessibility directional WHIM index/weighted by atomic masses -1.511 (1) 

12 P2v WHIM 
2nd component shape directional WHIM index/weighted by atomic van der Waals 

volumes 
1.534 (1) 

13 Km WHIM K global shape index/weighted by atomic masses -2.007 (1) 

14 R6u GETAWAY R autocorrelation of lag 6/unweighted -1.726 (7) 

15 R2m+ GETAWAY R maximal autocorrelation of lag 2/weighted by atomic masses 1.734 (1) 
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16 R7m+ GETAWAY R maximal autocorrelation of lag 7/weighted by atomic masses 1.006 (2) 

 

However, out of these nine models, only two were able to meet the requirement of having the r2Test value greater than 0.5. These 

two models are presented in increasing order of statistical significance as Equation (1) and Equation (2). 

 pIC50 = 1.198(±0.331)Mor24m  +1.533(±0.213)P2v -2.007(±0.246)Km  +5.256 

 n = 25, r = 0.929, s = 0.305, F(3,21) = 43.855, AIC = 0.129, FIT =3.870,  

 LOF = 0.135, Q2LOO = 0.787, Q2L5O = 0.799, r2Test = 0.660 (1) 

 pIC50 = -2.041(±0.245)ASP  -1.511(±0.198)E2m +1.734(±0.253)R2m+ +6.569 

 n = 25, r = 0.929, s = 0.304, F(3,21) = 44.150, AIC = 0.128, FIT =3.895,  

 LOF = 0.135, Q2LOO = 0.811, Q2L5O = 0.833, r2Test = 0.666 (2) 

The F-values, in the Equations above, are significant at 99% level (F3, 21(0.01) = 4.874). Moreover, the enclosed standard errors 

associated with regression coefficients are significant at a level exceeding 95%. The indices Q2LOO and Q2L5O (> 0.5) indicate the 

internal robustness of the models derived, while the index r2Test greater than 0.5 suggests that the selected test-set can be used for 

external validation of the models. The signs of the regression coefficients indicate the direction of influence of explanatory variables. 

A positive coefficient associated with a descriptor indicates that it will improve the activity of a compound. In contrast, a negative 

coefficient will lead to a detrimental effect.  

Equation (1) incorporates three descriptors: Mor24m, P2v and Km. Mor24m denotes the 3D-MoRSE-signal 24 weighted by 

atomic masses, whereas, P2v represents the 2nd component shape directional WHIM index weighted by atomic van der Waals 

volumes. Lastly, Km represents the K global shape index weighted by atomic masses. In Equation (2), the descriptors are ASP, E2m, 

and R2m+. ASP denotes the asphericity representation, E2m represents the 2nd component accessibility directional WHIM index 

weighted by atomic masses and R2m+ represents the maximal autocorrelation of lag 2 weighted by atomic masses. Positive 

regression coefficients for Mor24m, P2v, and R2m+ indicate that a higher value of these descriptors will increase the activity, while 

negative regression coefficients for Km, ASP, and E2m indicate that a lower value of these descriptors will be beneficial to improve 

the activity of a compound. 

Based on the results of Equation (2), it may be deduced that it explains 86% of the variance in the observed activity profiles, as 

demonstrated by the squared correlation coefficient, r2 of 0.863. The statistical parameters of this particular Equation have been 

fine-tuned to the most significant model, making it the best choice for calculating the herbicidal activities of all 33 congeners in the 

series. These calculated values are listed in Table 1 for easy comparison with observed values. Furthermore, a graphical 

representation (labeled as B in Figure 2) indicates a close match between the observed and calculated pIC50s for both the training-

set and test-set compounds.  

The study mentioned above was supported further by the implementation of PLS analysis (Wold, 1978; Kettaneh et al., 2005; 

Stahle and Wold, 1988). The most influential six descriptors were subjected to the PLS analysis relating to the herbicidal activity of 

the compounds. The outcomes are given in Table 4 wherein the symbols, SE and FC are the standard error associated to PLS 

coefficient and fraction contribution of regression coefficient respectively. 

 

Table 4 PLS and MLR-like PLS Equations from the descriptors of CP-MLR identified models for herbicidal Activity   

A PLS Equation B PLS Regression statistics 

PLS components PLS coefficient (SE) Symbol Estimate 

Component-1 0.481 (0.035) n 25 

Component-2  0.206 (0.042) r 0.953 

Constant      5.431 s 0.244 

    

F 108.151 

Q2LOO 0.878 

Q2L5O 0.876 

r2Test 0.685 

C MLR-Like PLS Equation 

S. No. Descriptor 
MLR-like  

Coefficient  
FC (order) S. No. Descriptor 

MLR-like  

Coefficient  
FC (order) 

1 ASP -0.765 0.139 (5) 5 Km -1.178 -0.217 (1) 

2 Mor24m 0.771 -0.106 (6) 6 R2m+ 0.815 0.145 (4) 
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3 E2m -0.803 -0.187 (3) - Constant 5.713 - 

4 P2v 0.984 0.205 (2) - - - - 

 

The descriptors were uniformly weighted as they were auto-scaled to attain a zero mean and unit standard deviation. Two 

components were found to be optimal for cross-validation, explaining 91% (r2 = 0.908) of the variances in the observed activity 

values. Provided in Table 4 are the PLS Equations for two components, along with MLR-like PLS coefficients of descriptors for 

herbicidal activities. As demonstrated in Table 1, the calculated pIC50 values of both the training-set and test-compounds closely 

align with the observed values. Additionally, Figure 2C plots the calculated vs. observed pIC50 values for the training- and test-

compounds. Table 4 shows the different orders of identified descriptors and their levels of significance with the biological activity. 

Figure 3 provides a graphical representation of the fraction contribution of normalized regression coefficients of these descriptors to 

the activity. 

 

 
Figure 3 The plot of fraction contribution of MLR-like PLS coefficients (normalized) against six identified descriptors (Table 4) 

associated with herbicidal activities of the compounds. 

 

A lower order indicates a higher level of significance for a given descriptor in addressing the biological activity. Descriptors 

with positive contributions enhance the activity, and higher values are desirable for further improvement. However, descriptors 

with negative contributions reduce the activity, and lower or more negative values of such descriptors may enhance the activity of a 

compound. Following these guidelines, an investigation was carried out on various analogs to ascertain if they demonstrate 

superior activity profiles compared to the compounds listed in (Table 1). Through this investigation, three congeners were 

discovered, featuring structural modifications at R1 and R2 (as visualized in Figure 1), and predicted pIC50 values; obtained via 

Equation (2) and PLS analysis, which yielded the most significant results. Below are the predicted activity values for compounds I, 

II, and III using Equation (2) and PLS analysis: 

 

Compound R1 R2 
Predicted pIC50(M) 

Eq (2) PLS 

I Me 2-Br, 4-Cl 8.52 8.45 

II Me 2-Br, 4-Et 8.08 7.88 

III CHF2 2-Br, 4-Cl 7.61 7.88 

 

Many attempts were made to vary -Me, -CHF2, and -CF3 at R1, and di-substitution from -Br, -Cl, -Me, -Et, CH2Br, -CH2Cl in 

various permutations at 2- and 4-positions pertaining to R2. However, the predicted herbicidal activity profiles obtained for the 

above three compounds were found superior compared to the titled compounds that have been listed in (Table 1). Therefore, these 

compounds are suggested for further exploration. The applicability domain, AD of models derived from the complete data-set was 
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assessed through the Williams plot. It involves the plot of standardized residuals against leverage (hi) values. The most significant 

descriptors (ASP, E2m, and R2m+) were considered to develop a model for the complete data-set. The resulting model is depicted 

through regression Equation (3). 

 pIC50 = -2.223(±0.284)ASP  -1.525(±0.207)E2m +1.656(±0.277)R2m+ +6.788 

 n = 33, r = 0.898, s = 0.386, F(3,29) = 40.126, AIC = 0.190, FIT = 2.866,  

 LOF = 0.195, Q2LOO = 0.755, Q2L5O = 0.694 (3) 

The assessment of the AD involves utilizing standardized residuals and leverage values. By considering the limits of 

standardized residuals as ±β ×s.d., Y-outliers are identified, while the leverage threshold is taken as h* (= 3(k + 1)/n). A visual 

representation of the influential descriptors is presented in Figure 4, displaying the training-set and the test-set compounds.  

 

 
Figure 4 The Williams plot for whole data-set for DPP-4 inhibition activities of titled compounds, listed in Table 1 (leverage 

threshold h* = 0.480 and residual limits = ±1.158). 

 

The suggested model effectively matches the most significant parameters, with strong fitting power for both the training-set and 

test-set compounds, and is capable of accurately evaluating external data. All compounds, except compound 7, were within the AD 

indicating that the model could assess both the training-set and test-set compounds correctly. However, compound 7 appeared to 

be an outlier but could not be removed from the study as it was the most potent congener in the series. Removal of the lowest or the 

highest active compound could mislead the results in a QSAR study. 

 

4. CONCLUSION 

The effectiveness of 33 novel derivatives of 6-(5-aryl-substituted-1-pyrazolyl)-2-picolinic acid in killing weeds was analyzed 

quantitatively using three methods. These methods are the Fujita-Ban, FB approach, the combinatorial protocol in multiple linear 

regression, CP-MLR computational process and the partial least squares, PLS analysis. The FB methodology is a non-parametric 

approach, based on the additive principle of the substituent's activity contribution to the parent compound. This approach is 

limited to the parent data-set, but it identifies the activity contribution of the substituents relative to the parent compound. The 

analysis focused on the activity contributions of different substituents at R1 and R2 positions (Figure 1) that led to the most active 

analog. Compound 7 (Table 1) had the highest observed activity profile, with patterns of substituents that were effective. The 

calculated activity values were in close agreement with the observed ones. 

 The CP-MLR procedure uses quantitative structure-activity relationship, QSAR models to explain the herbicidal activity of a 

group of congeners. Among the most significant 3D-descriptors were the representation of asphericity, ASP, the 2nd component 

accessibility directional WHIM index/weighted by atomic masses, E2m, and the R maximal autocorrelation of lag 2/weighted by 

atomic masses, R2m+. The identified models were validated through statistics from the test-set. The AD analysis confirmed that the 

model has adequate predictability, as both the training-set and test-set analogs were present within the domain.  
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Therefore, the model correctly predicted the herbicidal activities of all the compounds in the series. The discussion highlighted 

some guidelines that were helpful in exploring new potential analogs of the series. The effectiveness of the MLR-like PLS coefficient 

(normalized) was calculated concerning the activities of the compounds in conjunction with six identified descriptors. The PLS and 

MLR-like model Equations were utilized to confirm the superiority of the descriptors obtained from the CP-MLR study. Moreover, 

the computed pIC50s were consistent with the observed ones. 
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