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ABSTRACT 

The aim of this paper is to construct a Zarisky topology in a ring C(X) through a functor C, where X is a pointed topological spaces 

and construct   a representation of Zarisky topology in a ring C(X). In this paper we show that 

i)  Spec(C(X))  is a  Zarisky topology  in a ring C(X), where Spec(C(X)) denotes  the set of all prime ideals of  ring C(X) and construct a 

functor ‘Spec’ associated with Zarisky topology; and finally  

ii)  we study the functor ‘Spec’ associated with Zarisky topology; 

 

Mathematics subject classification 2010:  18A22, 18B30, 14P25. 
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1. INTRODUCTION  

The concept of affine algebraic sets plays an important role to construct Zarisky topology. In this section we give some basic 

definitions. 

 

Definition 1.1     

 Let K[x1,x2,x3,….,xn] denotes the polynomial ring over an arbitrary field K in  n-variables and  f1, f2, f3 ,……,fm K[x1,x2,x3,….,xn].  
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The function V: S → Kn  defined by V(S) = {(x)  Kn: f(x) = 0 ,  f S},  

where S = { f1, f2, f3 ,……,fm } K[x1,x2,x3,….,xn]  and  (x) = (x1,x2,x3,….,xn)  Kn is called  the algebraic set  i.e., the algebraic set V(S) is the 

set of solutions in Kn of the system of equations:  

f1(x1,x2,x3,….,xn) = 0, f2(x1,x2,x3,….,xn) = 0, f3(x1,x2,x3,….,xn)  = 0,…,fm(x1,x2,x3,….,xn) = 0 .  

 

Definition 1.2  

 A subset  A in Kn is called an affine  algebraic  set  if  A = V(S)  for some  S  K[x] .  

Thus any algebraic set A is defined  by a finite set of polynomials in K[x] . 

 

Definition 1.3    

An  algebraic set A in Kn is called irreducible or an  affine variety iff  A B  C , where B and C are algebraic sets in Kn and A B , A C 

. 

 

Definition 1.4    

 Let  k  be a subfield of  K . If A is an affine algebraic set in  Kn  admits a set of generators in  k[x1,x2,x3,….,xn]  K[x1,x2,x3,….,xn] ,then A 

is called an affine (K,k) algebraic set and  k is called the field of definition of A . 

Thus an affine (K,k) algebraic set  A is a subset in Kn consisting of all common zeros of a subset of polynomials in k[x1,x2,x3,….,xn].  

If  k = K , we call A  is an absolute affine algebraic set in Kn. 

 

Definition 1.5     

A category  C consists of  

a) a class of objects X,Y,…,denoted by Ob(C); 

b) for each ordered pair of objects X,Y a set of morphisms with domain  X and range Y denoted by C(X,Y); 

c) for each ordered triple of objects X,Y and Z and a pair of morphisms; f: X→Y and  g:Y→Z, their composite is denoted by  gf :X→Z, 

satisfying the two axioms: 

i)  associativity 

ii)  identity 

                

Definition 1.6    

Let C and D be two categories. A contravariant functor  T  from  C  to  D  consists of  

a)  an object function which assigns to every object X of  C  and object T(X) of D ; and 

b)  a morphism function which assigns to every  morphism f: X →Y in C , a  morphism  

T(f) : T(Y) → T(X)  in D  such that  

i)  T(IX) = IT(X), 

ii)  T( g f) = T(f) T(g) , for  g : Y→ Z  in  C 

 

Definition 1.7   

Let  C and  D be categories. Suppose T1 and T2  are both contravariant functors from C to D.  

A natural transformation    from  T1  to  T2  is a function from the objects of  C to the morphisms of D such that for every morphism 

f: X →Y in  C  the following condition holds: 

(X) T1(f) = T2(f) (Y) ,i.e., the diagram  
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2. ELEMENTARY PROPERTIES 

In this section we give some basic results which are essential in the sequel. 

 

Lemma 2.1   

 A subset  U of  Kn  is an open set  iff   Kn- U  is an affine  k – algebraic set.  

Thus an  affine  k-algebraic sets in Kn  are the closed sets in Kn. 

 

Proof: Using [4] and [5] , it follows.  

 

Lemma 2.2    

Any subset A of  Kn  is an affine k-variety ,  then  a  subset  A  is closed  in  Kn  iff  it is an affine  k-algebraic set. 

 

Proof: Using   Definition 1.2, Definition 1.4 and Lemma 2.1 , it follows.  

 

Lemma 2.3   

Any finite subset of  Kn is  an algebraic set. 

 

Proof: Using [4, art.5.5] , it follows.  

 

Lemma 2.4   

An  algebraic set  A  in  Kn  is affine variety  iff  I(A)  is a prime ideal.  

 

Proof: Using [4, art.5.5] , it follows. 

  

Lemma 2.5   

Let C be any category and T be a contravariant  functor from C to S (category of sets and functions) .Then for any object C in C , 

there is an equivalence  

: (hC,T) →T(C), where (hC,T) is the class of natural transformations from the set valued functor  hC to the set valued functor  T such 

that   is natural in C and T. 

   

Proof: From [4, appendix B] , it follows. 

  

Lemma 2.6 

For each subset P of a ring  R , let  X = V( P) denotes the set of all prime ideals of R which contains P, then  

i) V(0) = X  and V(1) = , 

ii) If (Pi)iI  is any family of subsets of  prime ideals of  R, then   

V 











Ii

iP = ( )
Ii

iPV


 

iii) V( P1)  V( P2) = V(P1  P2) = V(P1 P2).  

 

Proof:  Using [4, art.5.5] , it follows.   

This shows that the set V(P) satisfies  all the axioms for  closed sets in a topological space.   

 

3. FUNCTOR ASSOCIATED WITH ZARISKY TOPOLOGY 

In this section we construct and investigate  the Zarisky topology . To do this we prove the following:  

 

Theorem 3.1   

All affine k-algebraic sets in Kn are the closed sets in Kn . Then this sets form a topology in Kn. This  topology  is called the  Zarisky 

topology in Kn. 
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Proof:  Since empty set and whole set are closed sets ; the intersection of  any family of closed sets  is a closed set; and the union of 

two closed set is a closed set.  Using Lemma 2.2,  it follows. 

 

Let  X  be a pointed topological space and C(X) be the set of all base point preserving real valued continuous functions defined on X. 

Then (C(X), +,) forms a ring, where (f+g)(x) = f(x) + g(x) and (fg)(x) = f(x)g(x). 

 

Let X be  a pointed topological spaces and construct  a  representation  of  Zarisky topology  in a ring C(X). 

 

Let  Top  denote the category of pointed topological spaces and base point preserving continuous maps and R be the category of 

rings and ring homomorphisms , then by [7] 

    

Theorem 3.2 C: Top → R is a contravariant  functor, where Top  denote the  category of pointed topological spaces and base point 

preserving continuous maps and  R denote the category of rings and ring homomorphisms. 

 

Let C(X) be a ring. Define prime spectrum Spec(C(X)) of C(X) by  

 Spec(C(X)) = {P : P is prime ideal of C(X)}. 

 

Theorem 3.3   

Let Spec(C(X)) denote the set of all prime ideals of a ring C(X). All subsets in the set of all prime ideals of a ring C(X) , form  a  

topology Spec(C(X)) , is called Zarisky topology. 

 

Proof:  Using Lemma 2.2,Lemma 2.6 & Theorem 3.1 , it follows. 

 

Theorem 3.4    

Let R be the category of rings and  ring homomorphisms  and T  denote the category of sets and functions. Then  Spec : R→T  is a 

contravariant functor 

 

 Proof: Let C(X) and C(Y) are  rings  in R and f: C(X)→C(Y)  is a ring homomorphism in R .  Define f*: Spec(C(Y))→Spec(C(X)) by f*(Q) = 

f-1(Q),  QSpec(C(Y)) , then f-1(Q) is a prime ideal of C(X) and hence  f-1(Q)  Spec(C(X)). 

Let f : C(X) → C(Y) and g : C(Y)→C(Z) be a ring homomorphisms in R .Then gf : C(X)→C(Z)  is also a ring homomorphism.  

Therefore   Spec(gf): Spec(C(Z)) → Spec(C(X)) by  

Spec(gf)(Q) = (gf)-1(Q) , Q Spec(C(Z)) 

                     = (f-1g-1)(Q) 

                     =  Spec(f) ((Spec(g)(Q)) 

  Spec(gf)(Q) = (Spec(f)  Spec(g))(Q) ,  Q Spec(C(Z)). 

  Spec(gf) = Spec(f)  Spec(g) 

 

Also,  Spec(IC(X)) = ISpec(C(X)) , where  IC(X) : C(X)→ C(X) in R. 

 

Using  Lemma 2.5 , we say that the set of pointed topological space X there is a bijective correspondence with the set of all 

prime ideals of the ring C(X), where C(X) be the set of all base point preserving real valued continuous functions defined on 

X. 

 

Let hC(X)(C(Y)) = Hom(C(Y),C(X)).  

 

We define for each f: C(X) → C(Y) in R, hR[A](f) = Hom(C(Y), C(X)) → Hom(C(X),C(X)) by  

                                   hC(X)(f)() =  o f ,    Hom(C(Y),C(X).  

 

Theorem 3.5   hC(X): R→T  is a contravariant functor. 

Proof: From [5] , it follows 
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Thus we have two contravariant functors  Spec  and  hC(X)  from the category  R  to the category T. 

 

Now we have the following Theorems: 

 

Theorem 3.6  

For each set X in Top , there is an equivalence  

 : (hC(X),Spec)→ Spec(C(X)), where ( hC(X),Spec) is the set of all natural transformations from the contravariant  functor  ‘Spec’ to 

the contravariant functor  hC(X). 

 

Proof: Using  Lemma 2.5, it follows. 

 

Corollary 3.7   

For each set pointed topological space X , there is an equivalence from the set of all natural transformations from the contravariant  

functor   Spec  to the contravariant functor  hC(X) to the Zarisky topology ‘Spec(C(X))’ 

 

Proof: Using Lemma 2.5, Lemma 2.8, Theorem 3.1, Theorem 3.3 ,Theorem 3.4  and Theorem 3.5,  it follows. 

 

Proposition 3.8   

The set (hC(X),Spec) of all natural transformations from the contravariant functor  Spec  to the contravariant functor  hC(X)  froms  a  

Zarisky topology  in C(X). 

 

Proof: Using  Lemma2.5,Theorem 3.4, Theorem 3.5 and Corollary 3.7, it follows. 
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