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ABSTRACT 

The open discharge of untreated sugar mill effluent (SME) onto agricultural land and 

into water bodies is widely recognized as one of the most polluting ecological 

disturbances adversely affecting soil systems and microbial processes. Our findings 

provide novel insights into the impact of SME discharge on soil physio-chemical 

properties and their correlation with soil microbial biomass (SMB)-C, -N, and -P 

across three selected paddy fields adjacent to sugar mills in Uttar Pradesh, India. 

From each selected paddy field, soil samples were collected randomly in triplicate 

from a depth of 10-15 cm. ANOVA revealed statistically significant (P < 0.05) 

differences in soil physico-chemical attributes and SMB-C, -N, and -P levels across 

the experimental sites. The variations in soil physico-chemical properties and SMB-C, 

-N, and -P levels across the selected experimental paddy sites could be due to the 

variations in quantity and quality of discharged SME from different sugar mill 

industries to the soil. The SMB-C, -N, and -P levels were found to be comparatively 

higher in the paddy soil of the Haidergarh site than in the Ayodhya and Burhwal 

sites. The SMB-C, -N, and -P exhibited positive correlation with total C and total N, 

NH4+-N, NO3⁻-N, soil moisture, and soil porosity. In contrast, a negative correlation 

was found between bulk density (BD) and electrical conductivity, as well as SMB-C, -

N, and -P, suggesting that a compact soil with higher BD and ions suppresses the 

levels of SMB. These findings indicate that SME discharge in paddy soils influences 

the soil physico-chemical characteristics, which in turn govern the SMB-C, -N, and -P 

levels, playing a crucial role in maintaining soil fertility and regulating soil nutrient 

availability to the paddy crop. 
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1. INTRODUCTION 

India, the world’s second-largest producer of sugarcane, contributes about 18.18% of 

Global output (FAO, 2023). The country’s sugarcane yield has increased from 33 

tonnes/ hectare in 1950-51 to around 78.9 tonnes/ hectare in 2023-24 (GOI, 2024). 
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However, rapid industrial expansion has intensified hazardous pollution in water sources, agricultural productivity, and food security 

(Albrizio et al., 2017; Shomanova et al., 2025). The Sugar industry is a primary environmental polluter (Sarfraz et al., 2019) that 

generates a considerable amount of effluents and solid waste, including bagasse, press mud, and filter cake (Kolhe et al., 2009), and 

continuously struggles to manage this effluent and its associated pollution load (Verma et al., 2021). 

Sugar mill effluent (SME), a major agro-industrial wastewater, is generated in huge quantities (Atila and Kazankaya, 2024). For 

every tonne of crushed cane, sugar mills consume 1,500 to 2,000 L of water and produce approximately 1,000 L of effluent (Saranraj and 

Stella, 2014). Despite regulation limits in India allowing effluent discharge of 200 L/ton of cane, infiltration of untreated SME discharge 

poses a serious threat to aquatic bodies, microbial population, agricultural land, and ecosystem (Mohan and Bajpai, 2018; Verma et al., 

2021; Lad et al., 2022; Rehman et al., 2024; Tisha et al., 2025). The SME wastewater contains high concentrations of dissolved organic 

matter (Thuangchon et al., 2025). It is characterized by low pH, high temperature, turbidity, electrical conductivity (EC), alkalinity, 

including elevated levels of BOD, COD, total acidity, total solids, total hardness, sulphate, phosphate, chloride, calcium, magnesium, 

TDS, TSS, etc. (Haider et al., 2022; Hussein, 2023; Gbadeyan et al., 2024).  

Prolonged use of SME for irrigation accumulates heavy metals in the soil. This increases the risk of their entry into the food chain 

through bio-accumulation, geo-accumulation, and bio-magnification, thereby posing significant environmental and health hazards 

(Muchuweti et al., 2006; Chopra et al., 2009; Khan et al., 2018). Furthermore, SME irrigation can disrupt soil fertility, plant growth, and 

microbial communities due to its highly poisonous chemical composition (Khan et al., 2019). The unknowingly consumption of 

groundwater contaminated by SME may lead to the accumulation of toxic metal ions in bones and other organs, causing health issues 

like diarrhoea, cancer, renal disorders, methemoglobinemia, and neurological problems (Rahim et al., 2021; Banerjee et al., 2023). 

Finally, when released into water bodies, the elevated BOD and COD levels of SME rapidly deplete dissolved oxygen, severely affecting 

aquatic flora and fauna (Nawaz et al., 2021; Rahim et al., 2021).  

The physico-chemical properties of SME significantly influence soil health, notably by increasing levels of organic carbon, EC, 

sulphur, and potassium. Although SME can enhance soil fertility through nutrient supply, but excessive accumulation of elements like 

sulphur and potassium can become toxic and subsequently decline the soil quality (Daulta et al., 2014). Furthermore, SME can inhibit 

paddy seed germination, disrupt soil structure, and adversely affect soil microbial populations (Shivappa et al., 2007; Samuel and 

Muthukkaruppan, 2011). Nitrogen in wastewater primarily exists as organic nitrogen, ammonium (NH4⁺), nitrite (NO2⁻), and nitrate 

(NO3⁻), and poses a significant ecological threat (Hurse and Connor, 1999). In Paddy soils, anaerobic conditions hinder the 

transformation and turnover of organic matter, thereby disrupting nutrient cycling (Zhu et al., 2017; Wei et al., 2021). In contrast, the 

alternating oxic and anoxic conditions found in rotation soils promote carbon stabilization (Wei et al., 2022). Given these challenges in 

anaerobic environments, microbial consortia present an efficient and economical approach for treating SME (Xu et al., 2010; Madariaga-

Navarrete et al., 2017). 

Soil microbial biomass (SMB) plays a crucial role in soil organic matter formation, nutrient cycling and availability, and the 

maintenance of soil fertility (Xu et al., 2020). It serves as an essential index for soil health, ecosystem productivity, and nutrient 

dynamics (Singh and Gupta, 2018). The SMB contributes to plant nutritional availability through mineralization of soil organic content 

and plays a crucial role in soil nutrient cycles. The pool sizes of SMB-C, -N, and -P in ecosystems are often large enough to significantly 

impact plant nutrient availability and soil productivity. In soils, microbial biomass measurements can provide the critical data 

necessary for ecosystem-level monitoring of disturbance and recovery.  In a well-established ecosystem, the microbial biomass 

determines its overall functioning (Smith and Paul, 2017). It can therefore be hypothesized that following a disturbance, such as land-

use change, a soil ecosystem with a higher microbial diversity and biomass will have a higher potential to sustain the microbially 

mediated processes. This capacity buffers soil nutrients and facilitates productivity restoration through efficient nutrient turnover 

(Singh, 2016). Conversely, ecological disturbance, including land use changes and pollutants, like heavy metals, can negatively impact 

the pool sizes of SMB-C, -N, and -P. This reduction, in turn, impairs beneficial microbial activities, ultimately leading to reduced soil 

fertility and productivity (Sun et al., 2023; Xu et al., 2023; Elrys et al., 2025). Previous investigations have demonstrated that SME 

contains organic compounds, macro-nutrients, micro-nutrients, heavy metals, and toxic components in dissolved or suspended forms, 

which adversely affect the physical, chemical, and physiological conditions of terrestrial and aquatic ecosystems (Lavanya et al., 2019; 

Arivoli et al., 2021). Studies have also demonstrated its negative impact on microbial population, enzymatic activities, seed 

germination, plant growth, and crop yields (Siddiqui and Waseem, 2012; Kumar and Srikantaswamy, 2015; Pandey et al., 2018; Verma 

et al., 2021). Nevertheless, a detailed study on the impact of SME on soil physico-chemical attributes, microbial diversity, microbial 

biomass, and their correlations remains unreported. Furthermore, there is a significant lack of information concerning the impact of 

quality and quantity of SME discharge, along with key environmental drivers and affected soil parameters, influence SMB-C, -N, and -

https://link.springer.com/article/10.1007/s12403-015-0158-6#ref-CR35
https://www.sciencedirect.com/science/article/pii/S0167880921005028#bib112
https://www.sciencedirect.com/science/article/pii/S0167880921005028#bib90
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/soil-fertility
https://www.sciencedirect.com/science/article/pii/S0167880921005028#bib101
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P levels in paddy agriculture soils. Therefore, the objectives of the present study were to explore (i) the impact of SME discharged 

quantity on physico-chemical properties and SMB-C, -N, and -P, and (ii) the correlation between soil physico-chemical properties and 

SMB-C, -N, and -P across different experimental paddy fields located in different districts of Uttar Pradesh, India. 

  

2. MATERIALS AND METHODS 

Location, vegetation, and climatic conditions of the selected experimental area 

Uttar Pradesh is the leading sugarcane producer in India, contributing 46.21% of the total area under cultivation and 43.65% of the total 

production (Singh and Singh, 2022). Therefore, for this study, sugar mills in selected districts of the Awadh region were selected, including 

Balrampur Chini Mills (Haidergarh, Barabanki), K.M. Sugar Mills Limited (Ayodhya), and UP State Sugar and Cane Development 

Corporation Ltd. (Burhwal, Barabanki) (Fig. 1). The coordinates of the selected sites are given in Table 1.  

 

 
Figure 1 Location of selected experimental sites in different districts of Uttar Pradesh, India. 
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The Ayodhya district covers an area of approximately 2,764 km2, situated within an alluvial plain dominated by deposits from the 

Gomati and Ghaghara rivers. The region has a sub-tropical climate, characterized by hot, dry summers (with temperatures up to 45 °C 

and desiccating winds from March to June) and cold winters (down to 5 °C from November to February). High potential evaporation 

occurs from March to October. The average annual rainfall is about 1,070 mm, 85% of which is received during the southwest monsoon 

(July to October). Primary crops include Oryza sativa and Triticum aestivum. Saccharum officinarum and Brassica juncea and horticultural 

crops (Mangifera indica, Phyllanthus emblica, Psidium guajava, and Musa sp.) are also cultivated (Sundar and Kittur, 2012; Kumar, 2018; 

Kumar et al., 2022). The Barabanki district, located 29 kilometres east of Lucknow, covers an area of 4,696.8 km2 within the fertile 

Ganga-Yamuna basin. Agriculture is the primary occupation for 72.6% of the working population. The average annual rainfall is about 

1,056 mm. Major crops include Triticum aestivum, Oryza sativa, and Saccharum officinarum, alongside pulses, oilseeds, and Zea mays. Key 

vegetable crops cultivated are cucurbits, Solanum tuberosum, Capsicum annum, Lycopersicon esculentum, Abelmoschus esculentus, Solanum 

melongena, Allium cepa, and Allium sativum (Kumar et al., 2015; Singh et al., 2017). These sugar mills release a considerable amount of SME 

into adjacent paddy agricultural lands. Farmers often use this SME as a substitute for Farm Yard Manure (FYM) or as a soil amendment in 

paddy fields to enhance paddy crop productivity. According to the Directorate of Economics and Statistics (DES), GOI, during the 2022- 

2023 season, paddy was cultivated on 99,090 hectares in Ayodhya and 188,580 hectares in Barabanki. 

 

Table 1 Coordinates and soil types of selected experimental sites. 

Experimental 

sites 

Name of the sugar mill 

industries 
Soil colour Soil texture Coordinates 

A 
K.M. Sugar Mills Limited, 

Ayodhya 
Brown Loamy soil 

(26087'57" - 26099'17" N & 

81002'74" - 81060'81" E) 

B 
Balrampur Chini Mills, 

Haidergarh, Barabanki 
Dark brown Loamy soil 

(26059'31" - 26059'30" N & 

81030'41" - 81030'63" E) 

C 

UP State Sugar and Cane 

Development Corporation Ltd., 

Burhwal, Barabanki 

Brownish yellow Loamy soil 
(27008'18" - 27008'19" N & 

81038'91" - 81039'13" E) 

 

Soil sampling and analyses 

For this study, soil samples were collected from three paddy fields at the crop maturity stage. Fields were selected with careful 

consideration to ensure homogeneity and uniformity in elevation, slope, and distance from each sugar mill. A completely randomized 

block design was employed for the paddy fields located in different districts of Uttar Pradesh, as described in Table 1.  

At each selected site, a 10 m × 10 m plot was demarcated for soil sampling. On October 19, 2023, soil samples were collected from a 

depth of 10-20 cm using a 2.5 × 45 cm soil core. From each marked plot, triplicate samples were collected from three different points 

(Fig. 2), resulting in a total of nine samples per paddy field (three sampling points × three replicates). Consequently, a total of 27 soil 

samples (three sites × three sampling points × three replicates) were collected from the three selected experimental fields. The samples 

were wrapped in aluminum foil, placed in sterilized airtight polythene bags, and transported to the laboratory (Singh et al., 2021). They 

were stored at 4 OC until physico-chemical and SMB-C, -N, and -P analyses. All soil parameter analyses were performed using 

analytical grade chemicals and reagents (HiMedia and Sigma-Aldrich). 

 

Physico-chemical analyses of collected soil samples 

The collected soil samples were air-dried at room temperature and gently homogenized by sieving through a 2 mm mesh to break 

down aggregates for physico-chemical analyses. Soil texture was determined using the standard sieving method (Indian standards, 

1965), and soil colour was assessed with the Munsell soil colour chart (Munsell, 1975). EC and pH were measured using EC and pH 

meters in soil-water suspensions at ratios of 1:5 and 1:2.5 (w/v), respectively (Wilcox, 1950; Pansu and Gautheyrou, 2006). Soil bulk 

density (BD) and water holding capacity (WHC) were evaluated according to Piper (1944). Soil moisture content (%) was determined by 

drying soil sub-samples at 105 OC for 24 h in a hot air oven as described by Buresh (1991), while porosity was calculated using the 

method of Bouma (1991). Total organic carbon (TOC) was estimated by the Walkley & Black (1947) method, while inorganic nitrogen 

forms (NH4+-N and NO3⁻-N) and P were quantified based on the Eno (1960) method. The total soil N was analysed as described by 

Jackson (1958). 
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Figure 2 Soil sample collection from SME affected experimental paddy fields from (A) Ayodhya, (B) Haidergarh, and (C) Burhwal sugar 

Mill area (D) SME discharged into the adjacent water body and the nearby paddy field. 

 

Soil microbial biomass -C, -N, and -P analyses 

The SMB-C, -N, and -P were estimated by the chloroform (CHCl3) fumigation-extraction procedures (Brookes et al., 1985; Vance et al., 

1987). Purified liquid chloroform was used for soil fumigation (Srivastava and Singh, 1988), followed by extraction with 0.5 mol L−1 

K2SO4 (1:4 soil: extract) for about 30 min. Similar extraction procedures were also adopted for non-fumigated soil samples. The SMB-C 

and -N were determined from 0.5 mol L−1 K2SO4 extract by dichromate digestion (Vance et al., 1987), while SMB-P was analyzed as 

inorganic-P (Pi) in 0.5 mol L−1 NaHCO3 extract of both fumigated and non-fumigated soil samples by ammonium molybdate-stannous 

chloride method (Sparling et al., 1985). 

 

Quality assurance and quality control  

We adhered to standard protocols for sampling, transporting, and handling of soil samples from SME impacted paddy fields. Soil 

samples were collected using a metal soil corer and sterilized hand gloves, placed in polypropylene bags, and stored in refrigerated 

conditions until laboratory analyses. All reagents and calibration standards were prepared using analytical grade chemicals using Milli-

Q (Millipore) water or double-distilled de-ionized water. Sterilized glassware was used to prevent microbial contamination. 

Experimental procedures followed thorough standard operating procedures (SOPs) and protocols, with continuous monitoring and 

detailed techniques to generate reliable and high-quality data. 
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Statistical analyses 

A one-way analyses of variance (ANOVA) was performed to compare the soil physico-chemical properties and SMB-C, -N, and -P 

values across the study sites. The presented values are means of three replicates ± standard error (SE). Since ANOVA requires a regular 

data distribution pattern, a positive and a homogeneity of variance test were also performed before the analyses of variance. Tukey’s 

HSD (Honestly Significant Difference) test was used to identify specific differences between group means. Pearson's correlation 

analyses was also performed to evaluate the interrelationships between soil physico-chemical properties and SMB-C, -N, and -P levels. 

All statistical analyses were conducted using SPSS version 27.0 (IBM, Armonk, NY, USA) at a 95% confidence level. 

 

3. RESULTS 

Soil physico-chemical properties 

The physico-chemical properties of soil samples collected from the experimental sites are presented in Table 2. The results suggest that 

soil texture was loamy at all sites. The soil colour was predominantly brown except at the Burhwal site, where it was brownish-yellow. 

The soil pH varied from 7.4 to 7.8, with significant variations observed between experimental sites (F = 20.885; N = 27; P < 0.001). The 

mean soil moisture (SM) content (21.96 %), water holding capacity (WHC) (42.5 %), and soil porosity (SP) (46.77 %) were noted as 

maximum in Haidergarh soil, followed by Ayodhya and Burhwal soil samples. Variations across the experimental sites was significant 

for SM (F=18.921; N= 27; P < 0.001), WHC (F=22.091; N= 27; P < 0.001) and SP (F=13.584; N= 27; P < 0.001). BD (1.73 gm cm-3) and EC (4.67 

µmho ms-1) were significantly higher in Burhwal soil samples and lowest in Haidergarh soil samples. Both BD and EC varied 

significantly (F = 17.692; N = 27; P < 0.001) and (F = 22.527; N = 27; P < 0.001), due to differences in study sites.  

 

Table 2 Description of soil physico-chemical properties across the experimental sites. For each parameter and experimental site, the 

value represents the mean of 9 replicates ± SE. One-way ANOVA showed significant differences (P < .001) in parameters across the 

experimental sites. The total number of soil samples (N) analyzed for each selected parameter was 27 (three experimental sites × three 

sampling points × three replicates). 

Soil parameters 

Experimental sites 

F value (N=27) Sig. 
(A) Ayodhya (B) Haidergarh (C) Burhwal 

Soil pH 7.8±0.003 7.6±0.007 7.4±0.006 20.885 < .001 

WHC (%) 34.03±0.003 42.55±0.007 30.39±0.003 22.091 < .001 

Soil porosity (%) 44.44±0.006 46.77±0.011 40.07±0.005 13.584 < .001 

Bulk density (gm cm-3) 1.55±0.006 1.45±0.002 1.73±0.004 17.692 < .001 

Soil moisture (%) 20.03±0.004 21.96±0.002 17.76±0.005 18.921 < .001 

EC (µmho ms-1) 4.52±0.005 4.13±0.003 4.67±0.004 22.527 < .001 

NH4+-N (µg g-1 dry soil) 5.66±0.004 5.96±0.004 5.23±0.003 20.095 < .001 

NO3⁻-N (µg g-1 dry soil) 4.67±0.006 4.89±0.006 4.41±0.007 23.185 < .001 

Total-C (µg g-1 dry soil) 15439.32±1.59 16870.60±12.92 14630.21±2.38 8.368 < .001 

Total-N (µg g-1 dry soil) 732.44±0.027 783.80±0.013 717.55±0.025 19.544 < .001 

Total-P (µg g-1 dry soil) 729.91±0.011 747.00±0.022 681.62±0.030 17.229 < .001 

WHC: water holding capacity, EC: electrical conductivity 

 

The soil NH4+-N and NO3⁻-N across the experimental sites were highest (5.96 and 4.89 µg g-1 dry soil, respectively) in Haidergarh 

samples and lowest (5.23 and 4.41 µg g-1 dry soil, respectively) in Burhwal soil samples and differences in NH4+-N and NO3⁻-N 
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concentrations in the soil across selected sites were significant (F=20.095; N= 27; P < 0.001; and F=23.185; N= 27; P < 0.001). The mean soil 

total-C (16870.6 µg g-1 dry soil), total-N (783.8 µg g-1 dry soil), and total-P (747.0 µg g-1 dry soil) were highest in Haidergarh soil samples 

compared to other study sites and across experimental sites variations in soil total-C, total-N, and P (F=8.368; N= 27; P < 0.001; F=19.544; 

N= 27; P < 0.001; and F=17.229; N= 27; P < 0.001, respectively) were noted to be significant. 

 

Soil microbial biomass -C, -N, and -P 

ANOVA revealed statistically significant variations (P < 0.001) in SMB-C, -N, and -P (Fig. 3) values across the experimental sites. The 

mean SMB-C across the experimental sites was significantly highest (789.09 µg g-1 dry soil) in Haidergarh samples and lowest (618.89 

µg g-1 dry soil) in Burhwal samples, with an overall significant difference across selected sites (F=22.313; N= 27; P < 0.001). Similarly, the 

highest mean SMB-N (97.21 µg g-1 dry soil) and SMB-P (65.76 µg g-1 dry soil) were also recorded in Haidergarh soil. Variations in soil 

SMB-N and SMB-P (F= 8.756; N= 27; P < 0.001; F=9.944; N= 27; P < 0.001) were noted to be significant. The trend of increasing order for 

SMB-C, -N, and -P was Haidergarh < Ayodhya < Burhwal (Fig. 3).  

 

 
Figure 3 Variations in soil microbial biomass (SMB) -C, -N, and -P content across the experimental sites. Values are means of nine 

replicates ±SE. On each bar, different letters indicate a significant difference between study sites for SMB-C, -N, and -P (P < 0.001). 

 

Relationship between soil physico-chemical properties and SMB-C, -N, and -P  

The SMB -C, -N, and -P exhibited significant positive correlations with pH, WHC, soil porosity, soil moisture, NH4+-N, NO3⁻-N, total-C, 

-N, and -P contents. In contrast, a strong inverse correlation was observed between BD and EC with SMB -C, -N, and -P across all 

experimental sites (Table 3). 

 

4. DISCUSSION 

Impact of SME on soil physico-chemical characteristics 

Most essential plant nutrients remain soluble and available for plant uptake within a pH range of 6.5 to 6.8. The soil pH in this study 

ranged from 7.4 to 7.8, consistent with previous research, which reported that the pH ranged from 7.6 to 7.9 (Nagaraju et al. , 2009; 

Balkhande et al., 2013; Daulta et al., 2014).  The mean pH of the sugar mill effluent (SME) itself was 7.32 ± 0.21, which falls within the 

permissible range of 5.5 to 9.0. The low pH value can be attributed to the use of phosphoric acid and sulfur dioxide during cleaning 

processes of sugarcane juice (Bhutiani et al., 2015). As pH deviates from the optimal range can cause nutrients to chemically bind, 

reducing their availability for plant uptake (Daulta et al., 2014). These findings suggest that the SME application influences nutrient 
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dynamics through pH alteration. Bulk density is a critical factor in assessing soil porosity and water retention capacity. The application 

of organic amendments, such as SME, can significantly alter the soil's bulk density by reducing its compactness. The BD and WHC 

were 1.41 gm cm−3 and 41.86% respectively, on application of 100% SME concentration (Baskaran et al., 2009; Kumar, 2014). Increase in 

WHC and decrease in BD at the Haidergarh site suggest a more porous soil structure and improved hydrothermal conditions 

compared to the other two sites. Furthermore, application of SME may enhance cation exchange capacity (CEC) and improve WHC of 

the soil (Daulta et al., 2014), supporting the observed improvements in soil physical properties.  

The higher soil moisture at the Haidergarh site may be attributed to more organic matter content and improved water aeration than 

Ayodhya and Burhwal sites. The sugar mill wastewater contains dissolved organic and inorganic compounds, which elevates 

electrolyte content and consequently, electrical conductivity increases at the Burhwal site. Samuel and Muthukkaruppan, (2011) also 

reported a greater EC of 0.43 µmho ms-1 in effluent irrigated soil compared to non-treated soils (Arivoli et al., 2021). 

Nitrogen present in untreated wastewater is mainly as ammonia and organic nitrogen, in both soluble and particulate forms (Sahu 

and Chaudhari, 2015). Mean values of NH4+-N and NO3⁻-N in the present study were recorded as higher in the Haidergarh site, 

whereas, Burhwal site observed comparatively lower values (Table 3). The increase in NH4+-N in Haidergarh soils may result from 

higher net ammonification rates and subsequent accumulation in the topsoil. Additionally, lower immobilization by soil microbial 

biomass and reduced plant uptake contributed to the accumulation of inorganic nitrogen (NH4+-N and NO3⁻-N) in these soils. The 

reason for higher N-mineralization rates may result from higher soil organic-C and -N content in the soil (Dhangar and Lohar, 2013). 

Furthermore, the variations in inorganic nutrient levels across sites receiving different quantities of SME may often be linked to the use 

of varied quantities and quality of phosphoric acid during sugar processing, cleaning, and other operations (Daulta et al., 2014).  

 

Table 3 Pearson’s correlation (2-tailed) between physico-chemical properties and soil microbial biomass of SME. Total soil samples 

analyzed were N=27 (three sites × nine replicates). Numbers denote respective physico-chemical parameters. 

Parameters ↓→ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1. Soil pH 1              

2. WHC (%) 0.259 1             

3. Soil porosity (%) 0.614** 0.920** 1            

4. BD (gm cm-3) -0.618** -0.912** -0.994** 1           

5. Soil moisture (%) 0.508** 0.963** 0.992** -0.985** 1          

6. EC (µmho ms-1) -0.241 -0.998** -0.910** 0.904** -0.956** 1         

7. NH4+-N (µg g-1 dry soil) 0.561** 0.944** 0.997** -0.992** 0.997** -0.936** 1        

8. NO3⁻-N (µg g-1 dry soil) 0.507** 0.958** 0.987** -0.977** 0.995** -0.951** 0.993** 1       

9. Total-C (µg g-1 dry soil) 0.324 0.997** 0.945** -0.936** 0.979** -0.994** 0.964** 0.974** 1      

10. Total-N (µg g-1 dry soil) 0.181 0.997** 0.886** -0.877** 0.938** -0.997** 0.914** 0.933** 0.989** 1     

11. Total-P (µg g-1 dry soil) 0.685** 0.879** 0.996** -0.990** 0.975** -0.868** 0.986** 0.971** 0.910** 0.838** 1    

12. SMB-C (µg g-1 dry soil) 0.434* 0.982** 0.977** -0.970** 0.996** -0.977** 0.989** 0.992** 0.993** 0.964** 0.953** 1   

13. SMB-N (µg g-1 dry soil) 0.393* 0.990** 0.966** -0.959** 0.991** -0.985** 0.981** 0.986** 0.997** 0.975** 0.938** 0.999** 1  

14. SMB-P (µg g-1 dry soil) 0.655** 0.898** 0.999** -0.993** 0.983** -0.887** 0.992** 0.979** 0.926** 0.860** 0.999** 0.965** 0.951** 1 

* Significant at P < 0.05; ** Significant at P < 0.01 level. 

 

The high concentrations of total-C (16,870.60±12.92 µg g-1 dry soil), total-N (783.8±0.013 µg g-1 dry soil), and total-P (747.0±0.022 µg 

g-1 dry soil) observed at the Haidergarh site in SME irrigated soil are likely due to elevated organic-C, -N, and -P nutrient load in the 

SME wastewater used for irrigation. These findings are consistent with those of Tabriz et al., (2011), who observed 2.14% of organic 

carbon in the effluent-affected soil, while Chopra and Pathak, (2013) reported 1.37% of organic carbon in SME amended soil. Similarly, 

Singh et al., (2010a), who also demonstrated that the application of farmyard manure amendment rich in organic contents significantly 

increases the organic-C, -N, and -P levels in saline paddy fields. Singh, (2018) and Singh et al., (2021) also reported that crop residues-
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based biochar amendment showed significant variation in total-N (P < 0.01) and organic-C (P < 0.001) in the soil of the paddy field. The 

significant variations (P < 0.001) in total-C, -N, and -P levels across different study soils due to high influx of organic litter and greater 

microbial-mediated decay and decomposition processes (Boudh et al., 2024).  Furthermore, Tiwari et al., (2019) reported land use 

changes and soil depths (P < 0.001) exhibited significant differences in total-C, -N, and -P levels across agricultural land, mixed forest, 

savanna, and natural forest. In this investigation, the variations in total-C -N and -P composition across the selected paddy agriculture 

fields reflect high qualitative and quantitative heterogeneity in the SME discharge that might likely be due to variations in tailing 

disposal time, microbial activity, and other soil and environmental drivers, as suggested by Liu et al., (2014). 

 

Impact of SME on SMB -C, -N, and -P 

A significant variation (P < 0.001) in SMB -C, -N and -P compositions, being maximum at Haidergarh site (789.09 µg g-1 dry soil, 97.21 

µg g-1 dry soil and 65.76 µg g-1 dry soil, respectively) in the soil of selected paddy experimental sites, affected by SME discharge are 

presented in Fig. 3. In present study the variations in SMB-C, -N and -P across different paddy soils can be attributed to the changes in 

the quantity and quality of SME discharge, as suggested by Singh and Gupta, (2018) regarding variations in SMB pools due to 

variations in organic-C and -N inputs plants residues for different forest ecosystems. Numerous studies show that the abundance of 

soil microbes and microbial biomass is directly proportional to precipitation and soil water content (Chen et al., 2015; Ma et al., 2015; 

Shah et al., 2024). Furthermore, the MB-N dynamics are influenced by environmental factors like moisture and temperature, as well as 

biological processes such as litter input and microbial-feeding fauna activity, which affect microbial growth (Chen et al., 2003).  

The results of this research work strongly to our hypothesis that SME application influences the SMB -C, -N, and -P in the upper soil 

layer (depth 0-20 cm) of paddy fields. The SMB -C, -N, and -P levels were observed to be highest in the Haidergarh site might be due to 

the elevated concentration of dissolved organic, inorganic compounds, macronutrients, and micronutrients in SME (Kumar and 

Srikantaswamy, 2015; Lavanya et al., 2019; Malik, 2019; Arivoli et al., 2021). An elevated microbial activity in SME affected paddy soils 

may likely enhance the decay and decomposition processes. This, in turn, improves soil physico-chemical properties and promotes the 

accumulation of soil microbial biomass, as evidenced by the increase in SMB -C, -N, and -P levels. 

The significant variations in SMB-C, -N, and -P values in this study indicate considerable variations in organic matter quantity and 

quality across the effluent-affected paddy field, diverse vegetation compositions, and soil characteristics across the SME affected paddy 

fields. These variations may also be due to the greater microbial activities, such as organic matter mineralization, which may have 

resulted in greater organic-C inputs and subsequently increased soil microbial biomass (Tiwari et al., 2018). The SME discharge can 

influence the soil microbial-mediated chemical transformations and nutrient cycling, potentially influencing the soil microbial biomass 

and composition (Tripathi and Tripathi, 2014; Pandey et al., 2018). Across the experimental paddy fields, soil organic matter and SMB 

may both vary due to variations in crop residue inputs due to differences in crop density variations, and paddy cultivars diversification 

(Cerny, 2008; Maharjan et al., 2017). Additionally, variations in TDS concentration of SME discharge may directly impact the soil 

microbial communities and their biomass (SMB-C, -N, and -P) (Kaur et al., 2010; Verma et al., 2021). This is supported by studies 

reporting significantly higher (P < 0.001) microbial population in SME irrigated soil, including a two-fold increase in bacterial and 

fungal population (Reddy et al., 2013). Srivastava et al., (2017) further observed that a maximum population of bacteria, rhizobia, and 

actinomycetes occurred at 50% SME concentration, whereas yeast and fungal populations peaked at 75% SME concentration. Therefore, 

in this study, an increase in SMB-C, -N, and -P may be associated with organic matters present in SME, which provides available more 

nutrients to microbial communities and therefore, builds up more soil microbial biomass (Ahmad et al., 2008; Mahmood et al., 2017; Xu 

et al., 2018). Additionally, the variations in soil physico-chemical properties, environmental drivers, and geography of selected paddy 

agriculture fields may be instrumental in SMB-C, -N, and P variations (Singh et al., 2010b; Singh, 2015). 

The SMB -C, -N, and -P exhibited significant positive correlations with pH, WHC, soil porosity, soil moisture, NH4+-N, NO3⁻-N, 

total-C, -N, and -P contents. Conversely, they were negatively correlated with BD and EC across all the experimental sites (Table 3). The 

positive correlation of SMB with inorganic-N nutrients, organic nutrients, and soil moisture in this investigation may have resulted 

because a greater soil microbial biomass and microbial communities may enhance the decay and decomposition of complex organic 

contents of paddy crop plant residues into simpler soil inorganic and organic contents, which in turn favours the soil to hold more 

WHC and soil moisture.  Contrary to the present result, the study of Singh et al., (2009) from dry tropical soils demonstrated that 

microbial biomass-N was negatively correlated with soil moisture and such situations raised because of the enhanced SM conditions in 

rainy season was in demand for a greater microbial mediated soil organic matter mineralization to satisfy inorganic-N availability to 

the vigorously growing plants during active growth period (monsoon season). The low levels of SMB-C, -N, and -P in this study, along 

with their negative correlation with BD and EC across sites, could be due to unfavourable soil conditions. The quality of SME discharge 
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may disturb the soil microbial activities, growth, and multiplication, thereby lowering SMB. This inhibitory effect is reflected in the 

reciprocal relationship between the magnitude of SMB-C, -N, and -P and both soil BD and EC (Table 3). 

 

5. CONCLUSION 

It may be concluded that the quality and quantity of SME discharged in paddy agro-ecosystems, located in the adjoining area of sugar 

mills, is one of the major causes for significant variations in soil physico-chemical properties and microbial biomass. The release of SME 

into paddy cropland has resulted in an increase in soil inorganic and organic nutrients, soil moisture, and SMB-N, -C, and P pools. 

These findings and analyses indicate that the SME substantially enhances the fertility and productivity of paddy cropland soils by 

playing an important role in enhancing microbial biomass and regulating carbon, nitrogen, and phosphorus status. The improved soil 

physico-chemical properties, as well as nutrient sources due to SME discharge, may positively support to the growth and 

multiplication of beneficial agriculturally important soil microbial communities and soil microbial biomass, which may act as a soil 

fertility index. Therefore, there is further need for better SME management, detailed research investigations, and policy/plans for its 

efficient use and sustainable benefits in paddy agriculture farming located in the adjoining area of sugar mill industries.  
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