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ABSTRACT 

The ever increasing demands for higher thermal efficiency from power plants have resulted to wide range of research in this regard. 

This work is one of such researches that deal with the performance optimization of a Combined Gas and Steam Turbines (COGAS) 

plant using Artificial Neural Network (ANN). A mathematical model of the COGAS plant was developed based on thermodynamic 

analyses and energy balance equations. This was used to develop a program and run in MATLAB environment to generate data for 

the ANN training. A comprehensive ANN program code was developed and implemented in MATLAB environment to create, 

configure, train and optimize the COGAS plant. Various ANN-based models of a two layered MLP structure with different 
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configurations were trained and investigated. Results show that the Multilayer Percentron (MLP) structure with two layers consisting 

of 10 neurons in the hidden layer, trainlm as its training function with tansig as its transfer functions for the hidden and output 

layers give an optimal model. It was observed that trainlm has a superior performance characteristic in terms of minimum MSE, 

compared with other training functions. The resulting model could predict the optimized performance output of the system with 

high degree of accuracy with a minimum MSE at 816 epochs. This point gives the lowest MSE performances value of 1.0056e-11 and 

regression plot between 0.99999 and 1. By simulating the target values and analyzing same, the results show the lowest and highest 

thermal efficiency to be 0.69951 and 0.76413. The uniqueness of this research is essentially in its methodology and will remain 

invaluable in future works that will focus towards improving the thermal efficiency of power plants. 

 

Key words: artificial neural network, optimization, thermal efficiency, COGAS. 

 

 

 

1.  INTRODUCTION 

A gas turbine (GT) is an internal combustion engine that uses the gaseous energy of air to convert chemical energy of fuel into 

mechanical energy. The steam turbine is a device that extracts thermal energy from pressurized steam and uses it to produce 

mechanical work. Thermodynamically, when two thermal cycles are combined in a single power plant the efficiency that can be 

achieved is higher than that of one cycle alone and energy is conserved (Sayed and Khaled, 2013; Ghaeth Fandi et al. 2018). 

Combination of cycles with different working media is quite interesting because their advantages can complement one another. 

Normally, when two cycles are combined, the cycle operating at the higher temperature level is called the "topping cycle". The waste 

heat it produces is then used in a second process that operates at a lower temperature level and is therefore called the "bottoming 

cycle" (Mohanty, 2014). It thus makes engineering sense to take advantage of the very desirable characteristics of the gas-turbine 

cycle at high temperatures and to use the high-temperature exhaust gases as the energy source for the steam power cycle 

(Ogbonnaya and Ugwu, 2012). 

The combination most widely accepted for commercial power generation and marine propulsion application is that of a gas 

topping cycle with a steam bottoming cycle (Tiwari et al, 2012). Along with its wide and successful application in land-based power 

plants, the combined gas and steam turbines (COGAS) concept is being extended to provide an alternative form of power plant for 

ships (Jefferson et al, 2014). COGAS should not be confused with combined steam and gas power plants, which employ oil-fired 

boilers for steam turbine propulsion during normal cruising and  the  gas turbines is supplemented for high speed and faster 

response/reaction times Flexibility provided by these systems satisfies utility power- generations (Famous O Igbinovia et al. 2018), 

industrial-cogeneration and ship propulsion applications where the efficiency of these systems can exceed 60% (Marek and 

Wojciech, 2011). Presently, the world most efficient power plant is a 66.22 percent combine cycle power plant built by general 

electric in partnership with Electricite de France (EDF). 

Modeling and simulation of combined cycles has always been a powerful tool for their performance optimization. However, the 

need to develop accurate and reliable models of COGAS for different objectives and applications has been a strong motivation for 

researchers to continue to work in this fascinating area (Asgari et al, 2013).  

Artificial neural network (ANN) introduced in 1943 by McCulloch and Pitts has shown a high and strong potential to be 

considered as a reliable alternative to the conventional modeling approaches, simulation, optimization and control methodologies 

due to their independence and adaptability to new conditions (Asgari et al, 2014). This work will deal with novel methodology for 

performance optimization of a COGAS plant using ANN-based architecture. 

 

2. METHODOLOGY 

The performance optimization of the units that make up the entire system of this COGAS plant with technical parameters shown 

below in Fig 2.1, are implemented utilizing the approach stated below: modeling the COGAS plant, writing a program to implement 

the modeling in MATLAB and to use the obtained operational data from a COGAS plant for the performance optimization of the 

COGAS plant using ANN architecture. The technical details of the COGAS system used for this research are shown in Appendix A. 

 

2.1. Analytical Model of the COGAS System 

For the purpose of this research, fig. 2.1 shows the schematic diagram of the COGAS plant used for the modeling. 
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Figure 2.1 Schematic diagram of a COGAS plant 

Source: Ogbonnaya, 2004 

 

The modeling was carried out in segment for mathematical convenience and simplification starting with the gas turbine 

modeling, steam turbine modeling and the combined cycle. 

 

2.1.1. Modeling the COGAS plant  

In the GT cycle (topping cycle) as shown in fig. 2.1, the air is compressed isentropically in the compressor from state 1 to 2 where its 

temperature rises from    T1 to T2. According to Ogbonnaya and Ugwu (2012), the work done in the compressor is given by: 

 

𝑊𝑔𝐶 = 𝑚𝑎𝐶𝑝𝑎
(𝑇2 − 𝑇1)        (2.1) 

            =  𝑚𝑎𝐶𝑝𝑇1(
𝑇2

𝑇1
−  1)          (2.2) 

But the pressure ratio is given by the expression below; 

                     
 𝑇2

𝑇1
=  𝑃𝑟

(
𝛾−1

𝛾
)
         (2.3)  

Considering the pressure ratio of the turbine, equation (2.1) becomes 

  𝑊𝑔𝑐 = 𝑚𝑎𝐶𝑝𝑇1 (𝑃𝑟
(
𝛾−1

𝛾
)
−  1)                (2.4) 

The expression for the work done, 𝑊𝑔𝑡 by the turbine is: 

  𝑊𝑔𝑡 =  𝑚𝑎𝐶𝑝(𝑇3 − 𝑇4)      (2.5) 

According to Rai et al (2013) and Cengal and Boles (2010), the efficiency of the gas turbine is: 
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  𝜂𝑔𝑎𝑠.𝑡𝑢𝑟 =  

𝑚𝑎𝐶𝑝(𝑇3− (
𝑇3

𝑃𝑟
(
𝛾 − 1

𝛾
 )
)) − 𝑚𝑎𝐶𝑝𝑇1(𝑃𝑟

(
𝛾−1
𝛾 )

− 1) 

𝑚𝑎𝐶𝑝(𝑇3−𝑇1𝑃𝑟
(
𝛾−1
𝛾 )

 )

    (2.6)  

 

 

 𝜂𝑔𝑎𝑠.𝑡𝑢𝑟 =

[(𝑇3− (
𝑇3

𝑃𝑟
(
𝛾 − 1

𝛾
 )
))−𝑇1(𝑃𝑟

(
𝛾−1
𝛾

)
− 1) ]

(𝑇3−𝑇1𝑃𝑟
(
𝛾−1
𝛾

)
 )

     (2.7) 

 

According to Ogbonnaya and Ugwu (2012), the net work done by the ST as shown in fig. 2.1 is given by the expression: 

  𝑊𝑛𝑒𝑡.𝑠𝑡𝑒𝑎𝑚 = 𝑊𝑠𝑡 − 𝑤𝑃      (2.8) 

Equation (2.8) can be written as; 

 𝑊𝑛𝑒𝑡.𝑠𝑡𝑒𝑎𝑚 = 𝑚𝑠(ℎ8 − ℎ9) − 𝑚𝑠(ℎ7 − ℎ6)     (2.9) 

Therefore, the ST cycle efficiency will be given by; 

  𝜂𝑠𝑡 =
𝑚𝑠[(ℎ8−ℎ9)−(ℎ7−ℎ6)]

𝑚𝑠(ℎ8−ℎ7)
             (2.10) 

From Cengel and Boles (2010), the net efficiency of the combined cycle can be obtained from the expression: 

  𝜂𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 =
(𝑊𝑛𝑒𝑡.𝑔𝑎𝑠+𝑊𝑛𝑒𝑡.𝑠𝑡𝑒𝑎𝑚)

𝑄𝑠𝑔
                 (2.11) 

 

𝜂𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 =

[
 
 
 
 
 

 

[𝑚𝑎𝐶𝑝(𝑇3− (
𝑇3

𝑃𝑟
(
𝛾 − 1

𝛾  )
)) − 𝑇1(𝑃𝑟

(
𝛾−1
𝛾 )

− 1)]+𝑚𝑠[(ℎ8−ℎ9)−(ℎ7−ℎ6)]

𝑚𝑎𝐶𝑝(𝑇3−𝑇1𝑃𝑟
(
𝛾−1
𝛾 )

 )

]
 
 
 
 
 

     (2.12) 

 

 

 

Figure 2.2 MLP network with two layers 

Source: Beale et al, 2011 
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Figure 2.3 Flow Chart of Generated Computer Code for MLP of the COGAS Plant 

 

2.2. Designing and Programming the ANN Models Using MLP 

MLP is one of the most useful neural networks in function approximation. The development of the back-propagation learning 

algorithm for determining weights in MLP has made these networks the most versatile neural network (Assi and Jama, 2010).  Many 

design parameters can be determined by trial and error when working with MLP. A network of two layers that is used in this work 

and shown in fig. 2.2, where the first layer is sigmoid and the second layer is linear, can be trained to approximate any function 

arbitrarily well (Beale et al, 2011). These functions are differentiable and can cope with nonlinearity of industrial systems.  

 

2.2.1. Data collection 

The data required for the ANN-based modeling were obtained from a combined gas and steam turbine developed for ship 

propulsion and programmed in MATLAB to generate the required inputs data set for the ANN training. 
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2.2.2. Creating, configuration and initialization of the network  

This stage involves specifying the neural network to be used, the number of hidden layers, neuron in each layer, transfer function in 

each layer, training function, weight/bias learning function and performance function (Kaiadi, 2006). In this context, the MLP neural 

network is used with two hidden layers. 

 

2.2.3. Training the network 

During the training process, the weights are adjusted in order to make the actual outputs (predicted) close to the target output of 

the network (Nikpey et al, 2013). In this work, the operational data of the COGAS plant are used for the training. As stated earlier, 

the back-propagation training algorithm is used in updating the weight and bias of the MLP network. MATLAB provides in-built 

transfer functions like the: Log-sigmoid, tan-sigmoid and purelin transfer as used in this work. 

 

2.2.4. Programming the neural network model 

 In this paper MATLAB (R2016a) is used to write script files for developing MLP ANN models and performance functions for 

calculating the model performance error statistic using MSE. Table 2.1 and Fig. 2.3 show the COGAS input parameter and flow chart 

respectively to develop the ANN model. 

 

2.2.5. ANN code generation 

To obtain a maximally trained and optimized ANN structure to ensure good generalization characteristic of the COGAS model, a 

comprehensive computer code was generated and run in MATLAB for a two-layer MLP network consisting of different back-

propagation training functions, transfer functions and a number of neurons. The number of neurons applied in the program ranges 

from 5 to 40.  

As shown in Fig. 2.3, after inputting and normalizing the data sets, they are randomly partitioned by default in MATLAB into 

training-70%, validation-15% and testing-15%. The next step involves specifying structure of the neural network-MLP and the 

configuration of the network by assigning the number of neurons, training function and transfer functions for the hidden and output 

layers. At this point the network is ready for the training process to commence and this is repeated two more times for the same 

adjusted factors, so that the best performance among the trials is identified, chosen and recorded. The process is repeated in two 

main loops of the code for different numbers of neurons (5 to 40), various back-propagation training functions, and a combination 

of different transfer functions for the hidden and output layers. 

The results of all the performances of the network are recorded and sorted on the basis of their performance measure-MSE. 

According to the code, all the weight values of the neurons are updated in each epoch. In this study, one thousand epochs was 

considered for the entire training process of the MLP network. This is to ensure that the training would not be stopped before 

reaching a dominating local minimum, from which the optimal ANN model was identified from the sorted results.  

 

Table 2.1 COGAS Input Parameters for the ANN-based models 

 

Parameters  Symbol Unit Operational Range 

GT compressor inlet temperature 𝑇1 K [273.15;328.15] 

GT compressor inlet pressure P1 bar [1.01325;21.0325] 

GT pressure ratio Pr - [11.5; 20.8] 

GT inlet temperature to the turbine T3 K [1650; 1850] 

GT air mass flow rate ma Kg/sec [67.9268;77.9268] 

GT fuel mass flow rate mg Kg/sec [0.00367; 0.2661] 

ST steam mass flow rate ms Kg/sec [0.79; 60.75] 

ST enthalpy before entering the pump ℎ6 KJ/kg [174.0;194.0] 

ST enthalpy after the pump ℎ7 kJ/kg [182.06; 202.0] 

ST enthalpy after the boiler ℎ8 kJ/kg [3398.0;3599.0] 

ST enthalpy after the turbine ℎ9 kJ/kg [2102.8;2302.8] 

ST inlet temperature T5 K [500.0;550.0] 

ST boiler pressure P5 Bar [80.0;100.0] 

Specific heat capacity of air Cp kJ/kgk [1.005;1.010] 
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Ratio of specific heat 𝛾 - [1.33;1.44] 

ST Condenser pressure P6 Bar [0.08;0.10] 

 

3. RESULTS PRESENTATION AND ANALYSIS 

To obtain an optimized network structure and to ensure a good optimization of the COGAS model, a comprehensive training of a 

two-layered MLP network in MATLAB environment was carried out. Different ANN structures were trained using partitioned data 

sets for training, validation and testing purposes. In this work, three thousand epochs was considered for the whole training process 

of the ANN, to be sure that the training would not be stopped before reaching a dominating local minimum.  

The results of the trainings were recorded and the performance was evaluated and compared in terms of their mean square error 

(MSE). Optimal ANN with minimum MSE was selected and tested again to ensure good generalization characteristics of the 

optimized COGAS model. The results from the model for different parameters of the ANN were compared are presented in Table 

3.1. 

 

 

 

 

Figure 3.1 Screen capture for MLP training with 20 neurons 

 

Table 3.1 Best Performance for Different MLP Configurations 

Training 

function 

Structure of 

MLP network 

Transfer 

function in 

hidden layer 

Transfer 

function in 

output layer 

Best validation 

performance 

epoch 

Best validation 

performance 

(MSE) 

Trainlm 16-5-1 Tansig Logsig 628 6.1187e-09 

Trainlm 16-5-1 Tansig Tansig 321 4.6278e-10 

Traingdm 16-5-1 Tansig Tansig 285 4.0652e-10 

Trainbr 16-10-1 Tansig Purlin 206 3.2923e-10 

Trainlm 16-20-1 Tansig Tansig 816 1.0056e-11 

Trainlm 16-20-1 Tansig Logsig 370 2.1941e-10 
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Traingd 16-30-1 Tansig Tansig 459 1.7856e-10 

Trainlm 16-40-1 Logsig Purelin nil Nil 

 

Table 3.1 indicates the best performance in terms of different MLP structures and training functions. It is observed that a two-

layered MLP structure using training function: trainlm, transfer functions: tagsigs for hidden and output layers, with 20 neurons 

showed the best performance (the least MSE). 

Fig 3.1 show the screen capture for the ANN training with 16 input parameters of the COGAS, hidden layer with 20 neurons, 

output layer with one neuron and one output which represent the COGAS thermal efficiency. Fig 3.1 also shows various parametric 

configuration of the MLP network. From the screen it can be seen that the training and validation stopped at an epoch of 916 

iterations having reached the best performance validation epoch of 826.  

Detail of the most optimal trained network based on performance of all the trained structures is shown in fig. 3.2. Performance 

of the MPL for training, validation and testing are indicated by the curves. From fig. 3.2, the epoch in which the validation 

performance error reached the minimum is 816. This point gives the lowest MSE performances value of 1.0056e-11. The training 

continued for another 82 more iteration (epoch) before the training stopped. 

 

 

 

Figure 3.2 Performance Curve of Optimal MLP Network 

 

 

 

 

Figure 3.3 Screen Capture of Simulated Result of the MLP Network 
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The values of the optimized outputs of the target set obtained from simulating the MLP network is shown in fig. 3.3. The results 

of the simulation give the lowest predicted thermal efficiency of 0.69951 and a highest thermal efficiency of 0.76413. More graphs of 

the ANN performance obtained from training the MLP network of different architecture of different characteristic curves are shown 

in Appendix B. 

 

4. CONCLUSION  

In this research work, thermodynamics and energy balance equations were employed to model the COGAS plant. A comprehensive 

computer program code was generated and run in MATLAB environment using the COGAS data obtained for ship propulsion. A 

method which involves data validation has evolved in this wok. The data generated from the modeled COGAS plant in MATLAB 

environment was employed in ANN with two-layered MLP structure for optimization purpose. 

 The results obtained based on this research work showed that the epoch in which the validation performance error reaches the 

minimum is 628. Also, the network simulation yielded an overall thermal efficiency between 69.9% and 76.4%. The results are 

evident to conclude that a proper ANN configuration and iteration enhance the improvement of the training performance and 

optimization characteristics of the COGAS system. It also identified the fact that modeling, simulation and analysis can be handled 

using ANN to produce results with a high degree of accuracy and reliability.  

 

Recommendations 

Based on the findings from the ANN training and simulation results, recommendations are as follows: 

1. ANN should be employed to maximize the optimization characteristics of COGAS systems.  

2. ANN methodology should be used to predict the thermal efficiency and performance of similar COGAS systems. 

3. Reasonable attention and consideration should be given to the thermodynamic properties of COGAS systems. 

4. Iterative approach should be adopted in parametric configuration of ANN-based architecture for result oriented optimization of 

COGAS systems. 

 

APPENDIX A 

Technical Details of the COGAS Used In This Work 

Gas turbine: 

Manufacturer      General Electric 

Model       GE9351FA 

Fuel        Natural Gas 

Number of shaft      1 

Frequency       50𝐻𝑍 

Pressure ratio      15.8 

Compressor inlet temperature   273.15𝐾 

Turbine inlet temperature    1950𝐾 

Exhaust temperature    872𝐾 

Power       259.5𝑀𝑊 

Thermal Efficiency     37.3% 

Heat rate       9643𝐾𝐽 𝐾𝑤ℎ⁄  

Air flow rate      802𝑘𝑔 𝑠⁄  

 

Steam turbine  

Manufacturer      Babcock 

Model       D2248B 

Steam flow rate      70.74𝑘𝑔 𝑠⁄  

Power       120𝑀𝑊 

Thermal efficiency     42% 

Inlet pressure       80𝑏𝑎𝑟 

Condenser pressure     0.08𝑏𝑎𝑟 

Inlet temperature      5000C 
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Calculated parameters 

Steam enthalpy at state 6,ℎ6     174𝐾𝑗 𝑘𝑔⁄  

Steam enthalpy at state 7,ℎ7     182.06𝐾𝑗 𝑘𝑔⁄  

Steam enthalpy at state 8,ℎ8     3398𝐾𝑗 𝑘𝑔⁄  

Steam enthalpy at state 9,ℎ9     2102.8𝐾𝑗 𝑘𝑔⁄  

 

APPENDIX B 

Performance of optimal MLP network with 5 neuron 

 

 

 

Performance of optimal MLP network with 10 neuron 
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