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ABSTRACT

The concrete is strong in compression but weak in tension, versatile, and brittle material which is serving from so many decades for
construction industries all over the world. The successful key for making durable concrete is to limit its ability to transport fluids like
water. In order to devise realistic testing methods, that determine the ability of concrete to with stand chloride penetration requires
an understanding of water mobility. In order to build durable oriented and practicable concrete structures, it is needed to be able to
accurately predict the chloride diffusion coefficient the within concrete structures. Therefore, there is a need to quantify the chloride
diffusion coefficient in concrete cubes which is of most important factor. The present research work is made an attempt to interpret
the concrete chloride diffusion coefficient in ordered to characterize the different concrete mixtures design for in case of concrete
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cubes. Thus the objectives of this present research are such as, First, this research will examine the influence of concrete ingredients

on the results of chloride diffusion coefficient performed on concrete cubes with different mixtures proportion in which slump, and
w/c ratio value is varied with constant compressive strength as in the first case and compressive strength, and w/c ratio value varied
with constant slump as in the second case. Seventy-two concrete cubes (100 mm3) with grades of concrete ranges from 25-40
N/mm? were prepared and evaluate the chloride diffusion coefficient under dried conditioned concrete cubes. Chloride diffusion
coefficient is co-related with square root of time by power type of equation in control/impregnation concrete cubes. Chloride
diffusion coefficient is initially increased, which may be due to concentration gradient. Concentration gradient is more at an initial
time duration, due to that the rate of absorption is also more, once the pore structure is fully saturated, the rate of diffusion
coefficient goes on decreases with time duration. Concentration gradient is more at an initial stage, goes on decreases as time
passes and thus diffusion coefficient is reduced gradually as time in turn reaches equilibrium state. It's also possible to correlate the
variation of chloride solution absorption content ratio with square root of time by linear type of equation. From this relationship it's
possible to predict chloride diffusion coefficient at any time duration based on chloride solution absorption in control/impregnation
concrete cubes.

Keywords:
Concrete, mixture proportion, grade of concrete, w/c ratio, chloride diffusion coefficient, chloride solution absorption content ratio

1. INTRODUCTION

The reinforced concrete is the most extensively used construction material, primarily due to its exceptional resistance to water, the
ease with which the structural elements can be cast into different shapes and sizes, and its availability in most parts of the world
[Mehta and Monteiro, 2006]. Concrete provides physical and chemical protection to the reinforcing steel against attack by
aggressive chemical species such as chloride ions and carbon dioxide, thus making RC a durable construction material. Concrete
structures are intended to last for decades or even centuries. However, the problem of premature deterioration of RC structures,
more specifically those exposed to harsh conditions such as marine environments, continues to be a serious issue in the concrete
construction industry. Several researchers have acknowledged the gravity of the problem through developing and promoting the
implementation of performance-based specifications approach over the prescriptive method, in order to facilitate quality control of
concrete as well as enable service life prediction of RC structures [Alexander and Thomas, 2015]. It is clear that deteriorating RC
structures require durable repairs in order to realise their remaining service life. The durability of concrete and mortars is largely
controlled by transport processes such as diffusion, permeation, capillary absorption and wick action, which occur within their pore
system [Nilsson, 2003]. The transport of fluids and aggressive chemical species play a significant role in reducing the service life of
RC structures. The ease with which water, chloride ions and carbon dioxide penetrates the concrete determines the rate of
deterioration of RC structures [Mehta and Monteiro, 2006]. The key aspects of durability, which comprise resistance to chloride
ingress and resistance to carbonation, therefore are vital in the design of durable repair mortars [Oh and Jang, 2007].

It has been reported that chloride ingress and carbonation are the main mechanisms that initiate reinforcement corrosion.
Literature further suggests that reinforcement corrosion is the main cause of deterioration in RC structures [Roziere et al, 2009]. The
damage to concrete members due to corrosion of steel is manifested in the forms of cracking, spalling and delamination, which
emanate from the accumulation of corrosion products that occupy a volume greater than that of the original steel [Ballim et al,
2009]. In marine environments and structures exposed to de-icing salts (bridges), chloride transport is a decisive factor for service
life design. Chloride attack is not a concern in unreinforced concrete, since it does not affect the concrete, but initiates corrosion of
steel, which consequently affects concrete. The main processes that transport chloride ions in uncracked concrete include, inter alia,
capillary absorption, diffusion, permeation, wick action and migration [Savija, 2014]. Studies have shown that the transport of
chloride ions in concrete is a complex process involving an interaction of several transport processes, accompanied by physical or
chemical binding of these ions [Gjorv, 2009]. Diffusion is the principal mechanism that drives the transport of chloride ions in
concrete exposed to a marine environment [Gjorv, 2009]. It is defined as the process through which fluids and ionic species move
through materials, due to concentration gradient [Pack et al, 2010]. Dissolved chloride ions require continuous liquid pathways in
order to diffuse through materials [Nilsson, 2003]. The key factors that influence the rate of diffusion are moisture content,
temperature, characteristics of the diffusing substance and the diffusivity of the material [Ballim et al, 2009]. The diffusion coefficient
provides an indication of the ease with which the diffusion process occurs in a material. It provides a measure of a material's
resistance to chloride penetration. Factors that influence the diffusion coefficient include the size, connectivity and tortuosity of the
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pores [Wegen et al, 2012]. Several test methods attempt to estimate the diffusion coefficient of cement-based materials. A typical

method is the bulk diffusion test discussed and the diffusion coefficient is determined from the chloride profiles of concrete
specimens [Stanish and Thomas, 2003]. The diffusion coefficient of concrete decreases with time due to continued cementing
reactions, chloride binding and evaporation [Wegen et al, 2012]. For this reason, the diffusion coefficient at early age may not
accurately represent the actual chloride resistance for concretes in service [ASTM C1556-04, 2004]. As mentioned by [Hamilton et al,
2007], extended exposure of test specimens may yield diffusion coefficients that provide a better representation of concrete in
service.

The concrete durability is dependent on mechanism of moisture transport within the concrete matrix. The moisture transport is
occurred in marine environment, where drying and wetting cycles occur, which leads chloride to penetrate into reinforced concrete
structures. In fact that, when chloride reaches the rebars, corrosion can appear and that decreases the service life time of the
concrete structures. Actually so many descriptions about moisture transport in concrete can be found in the literature such as the
authors [Arfvidsson, 1999] describe moisture transport in concrete structures by using a single diffusion coefficient. The moisture
diffusion factor is very the long term duration performance of cementitious materials which is described by so many diffusion
equations as well as solved by numerous numerical methods if provided the coefficients are well known. However, there is a need to
investigate about diffusion coefficient and transport behavior of the materials which is still remain an unsolved problem even
though many different models have been proposed [Bazant, and Najjar, 1972]. There is a major difficulty in establishing reliable
diffusion parameters, because diffusion of moisture inside cementitious materials is basically controlled by the micro-structure of the
material, and pore-size distribution. In fact that, the microstructure is changing with age as well as with relative humidity in the
pores. Therefore, all of the parameters, such as the water/cement ratio, type of cement, and curing time, which affect the formation
of the microstructure of cementitious materials, thus have significant effects on diffusion parameters. The water movement is very
slow in the concrete in turn it takes too much time to attain the equilibrium state as when compared to other porous materials and
the study of water movement is firstly done by [Sakata, 1983]. He is the one who is used Boltzmann-Matano method other methods,
in fact that, Boltzmann-Matano method has a benefit regarding cement based material research. Also an extensive research is
carried out by Akita and Fujiwara on the water movement [Akita, et al, 1990; Fujiwara, et al, 1988; Fujiwara, et al, 1992]. They used
different approaches to obtain the relationship between water content and water diffusion coefficient, and obtained consistent
results to those by [Sakata, 1983]. In addition to these results that, they found the temperature dependency of water diffusion
coefficient, water diffusion coefficient in very low water content region, and water diffusion coefficient of desorption and adsorption
processes. An improved formula for the dependence of diffusivity on pore humidity is proposed by [Yunping Xi, et al, 1994]. The
improved model for moisture diffusion is found to give satisfactory diffusion profiles and long-term drying predictions. The model is
suited for incorporation into finite element programs for shrinkage and creep effects in concrete structures. An extensive research is
carried out by researchers [Rafik Belarbi, et al, 2006] that, gravimetric method is adopted for the determination of moisture diffusion
coefficient and moisture distribution inside porous building materials. It's confirmed from the results that, the moisture diffusion
coefficient during absorption is higher than desorption process due to the absorption hysteresis, an increase of water-cement ratio
in cement paste.

It's also clear from results that, the high-strength concrete has a lower moisture diffusion coefficient than that of normal strength
concrete under the same curing period. An experimental work is carried out by [Su-Tae Kang, et al, 2012] on moisture diffusion in
order to investigate the variation of the moisture diffusion coefficient with age and temperature under different temperature
conditions. Based on these experimental results, it's possible to develop a new model of the moisture diffusion coefficient
considering the aging and temperature which is implemented by a numerical inverse analysis. As this model is considers factors
such as porosity, humidity, and temperature, beyond the existing model for hardened concrete, and the suggested diffusion
coefficient model is applicable to early age concrete. The investigation about the moisture transport mechanisms in concrete is
important in order to determine the service life of a concrete structure. In fact so many authors were managed to describe the
global moisture transport mechanisms in concrete structures during wetting/drying cycles by using Fick's laws of diffusion. An
extensive comparison is made between the results of a model with two diffusion coefficients and a model with a single diffusion
coefficient, where the diffusion coefficient is the average of the wetting and drying diffusion coefficient by investigators [Taher, et al,
2013].The result is computed for one cycle of wetting and drying and simulations show that, there are differences in the results of
the models. In order to validate the model and to investigate which of the models describes the moisture transport most accurately,
in fact that, there is an extensive experimental work is needed. The research work is carried out by investigators [Xiao Zhang, et al,
2015] that, in order to investigate the characterization of moisture diffusion inside early-age concrete slabs subjected to curing and
in which time-dependent relative humidity distributions of three mixture proportions subjected to three different curing methods
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and sealed condition were measured for about 28 days. Experimental results show that the RH reducing rate inside concrete under

air curing is greater than the rates under membrane-forming compound curing and water curing. In addition to that, the
comparison between model simulation and experimental results indicates that, the improved model is able to reflect the effect of
curing on moisture diffusion in early-age concrete slabs.

2. RESEARCH OBJECTIVES

The water transport in a porous network like concrete is a complex criterion. This is due to the fact that, many different kinds of
transport mechanisms in combination with various types of pores that typically appears in the same porous system. Therefore there
is a need to study water transport mechanisms with different designed mixtures type in order to assess the rate of chloride diffusion
coefficient in concrete structures. The present research work is made an attempt to interpret the concrete chloride diffusion
coefficient in ordered to characterize the different concrete mixtures design for in case of concrete cubes. Thus the objectives of this
present research is to examine the influence of concrete ingredients on the results of concrete chloride diffusion coefficient
performed on concrete cubes with different mixtures proportion in which slump, and w/c ratio value is varied with constant
compressive strength as in the first case and compressive strength, and w/c ratio value varied with constant slump as in the second
case. Seventy-two concrete cubes (100 mm?3) with grades of concrete ranges from 25-40 N/mm? were prepared and evaluate the
concrete chloride diffusion coefficient in concrete cubes.

3. EXPERIMENTAL PROGRAM

In the present research work, six different mixtures type were prepared in total as per [BRE, 1988] code standards with concrete
cubes of size (100 mm3). Three of the mixtures type were concrete cubes (100 mm?) with a compressive strength 40 N/mm?, slump
(0-10, 10-30, and 60-180 mm), and different w/c (0.45, 0.44, and 0.43). These mixtures were designated as M1, M2, and M3. Another
Three of the mixtures type were concrete cubes with a compressive strength (25 N/mm?, 30 N/mm?, and 40 N/mm?), slump (10-30
mm), and different w/c (0.5 0.45, and 0.44). These mixtures were designated as M4, M5, and M6. The overall details of the mixture
proportions were to be represented in Table.1-2. Twelve concrete cubes of size (100 mm?) were cast for each mixture and overall
Seventy-two concrete cubes were casted for six types of concrete mixture. The coarse aggregate used is crushed stone with
maximum nominal size of 10 mm with grade of cement 42.5 N/mm? and fine aggregate used was 4.75 mm sieve size down 600
microns for this research work. As concern to impregnation materials, Water based (WB) and Solvent based (SB), impregnate
materials were use in this present research work. To avoid criticizing or promoting one particular brand of impregnation materials
and for confidentiality reasons, the names of the products used will not be disclose and they will be refer to as WB and SB
respectively. WB is water borne acrylic co-polymer based impregnation material, which is less hazardous and environmental friendly.
It is silicone and solvent free and achieves a penetration of less than 10mm. SB consists of a colourless silane with an active content
greater than 80% and can achieve penetration greater than 1T0mm.

Table 1 (Variable: Slump & W/C value; Constant: Compressive strength)

Mix No Comp/mean target Slump w/c C w FA CA(Kg) Mixture
strength(N/mm?) Proportions
(mm) (Ka)  (Ka) (Ka) 10 mm
M1 40/47.84 0-10 045 360 162 586 18.60 1:1.63:5.16
M2 40/47.84 10-30 044 435 192 562 16.88 1:1.29:3.87
M3 40/47.84 60-180 0.43 543 234 642 1430 1:1.18:2.63

Table 2 (Variable: Compressive strength & W/C value; Constant: Slump)

Mix No Comp/mean target Slump w/c C W FA CA(Kg) Mixture

strength(N/mm?) Proportions

(mm) (Ka) (Ka) (Ka) 10 mm
M4 25/32.84 10-30 0.50 384 192 598 17.04 1:1.55:4.44
M5 30/37.84 10-30 045 427 192 6.09 16.50 1:1.42:3.86

M6 40/47.84 10-30 044 435 192 562 16.88 1:1.29:3.87
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3.1. Chloride diffusion coefficient
The chloride diffusion coefficient is determined from the solution of one-dimensional Fick's theory for unsteady diffusion process.

The percent of chloride solution absorption gain at any time t, (Mt) can obtain from the solution of the one-dimensional Fick's

model with constant boundary conditions as:
8 5 —-D(2n + 1)?m?t
Mt=M{1-— > @n+1)exp[—————1)
n=0

Where M is the chloride solution absorption gain at saturation equilibrium (%), n is a known integer which is varied from material

to material, L is the thickness of the material, and D is the diffusivity of the material. At initial stages of diffusion, the solution for
Fick's law at lesser time reduces to as:

Mt _4 (D )t
Moo L2

It's also possible within this present research work that, to interpret the chloride diffusion coefficient in pre-conditioned control
DCC (M1CC-M6CC) and impregnation concrete cubes (M1SB-M6SB/M1WB-M6WB) on the basis of chloride solution absorption at
different specified time intervals (1, 3, 6, 9, 12, 15, 18, 21, and 24 days) with their varied chloride diffusion coefficients in DCC cubes
as represented in the Table.3.

Table 3 Chloride diffusion coefficients in DCC/SB/WB concrete cubes

Mix ID 1 day 3 day 6day 9day 12 15 18 21 24

M1CC 097 0.78 0.68 0.60 0.57 0.54 0.52 0.50 0.48
M1SB  0.93 0.71 0.68 0.59 0.56 0.53 0.51 0.49 048
M1WB 0.94 0.74 0.68 0.60 0.57 0.54 0.52 0.50 0.49
M2CC 093 0.78 0.69 0.61 0.57 0.54 0.51 0.50 0.48
M2SB  0.94 0.74 0.68 0.60 0.56 0.53 0.52 0.49 048
M2WB  0.95 0.75 0.69 0.59 0.56 0.53 0.51 0.50 0.49
M3CC 094 0.77 0.68 0.60 0.57 0.54 0.51 0.50 0.48
M3SB  0.94 0.77 0.69 0.61 0.56 0.54 0.52 0.50 0.49
M3WB  0.93 0.78 0.56 0.60 0.56 0.54 0.51 0.50 0.48
M4CC  0.98 0.77 0.63 0.60 0.57 0.54 0.52 0.49 0.49
M4SB  0.99 0.78 0.68 0.60 0.57 0.54 0.52 0.50 0.49
M4WB  1.05 0.82 0.68 0.63 0.59 0.56 0.53 0.51 0.50
M5CC  0.98 0.79 0.65 0.61 0.58 0.55 0.52 0.51 0.49
M5SB  1.18 0.91 0.68 0.70 0.66 0.62 0.61 0.59 0.57
M5WB  0.90 0.73 0.63 0.57 0.53 0.51 0.49 0.47 0.46
M6CC  0.95 0.77 0.67 0.60 0.56 0.54 0.52 0.50 0.48
M6SB  0.89 0.69 0.68 0.54 0.55 0.53 0.52 0.51 0.48
M6WB  0.92 0.74 0.67 0.60 0.56 0.53 0.51 0.50 0.48

4. DISCUSSION ABOUT RESULTS

The chloride diffusion coefficient is gradually increased at initial time duration, afterwards deviates with square root of time duration
and reaches equilibrium in turn indicates that, pore structure is attained fully saturated condition. The chloride diffusion coefficient is
increased at time interval (2.23 min) as when compared to time interval (173.89 min) for in case of all designed control mixtures type
(M1CC-M2CC:4.13-0.14, M1CC-M3CC:3.32-0.10, M1CC-M4CC:9.95-0.80, M1CC-M5CC:7.60-1.55, M1CC-M6CC:8.51-0.04, M2CC-
M3CC:-0.84-0.03, M2CC-M4CC:6.08-0.67, M2CC-M5CC:3.62-1.69, M2CC-M6CC:4.57-0.10, M3CC-M4CC:6.86-0.70, M3CC-M5CC:4.42-
1.66, M3CC-M6CC:5.37-0.06, M4CC-M5CC:2.62-2.37, M4CC-M6CC:1.60-0.77, and M5CC-M6CC:0.99-1.57)%. The diffusion coefficient
is initially increased, may be due to concentration gradient. Actually the concentration gradient is more at an initial time duration,
due to that the rate of absorption is also more, once the pore structure is fully saturated, the rate of diffusion coefficient goes on
decreases with time duration. Thus the concentration gradient is more at an initial stage, goes on decreases as time passes and thus
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diffusion coefficient is reduced gradually as time in turn reaches equilibrium state. The variation of chloride diffusion coefficient in
control concrete cubes for in different mixtures type (M1CC-M6CC) is as shown in Figs.1a-1f respectively. Chloride diffusion
coefficient is correlated with square root of time by power type of equation for in all designed control mixtures type (M1CC-M6CC).
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The chloride diffusion coefficient is increased at initial time duration, deviates with square root of time duration and reaches
equilibrium when the concrete structure is attained fully saturated condition. The chloride diffusion coefficient is increased at time
interval (2.23 min) as when compared to time interval (173.89 min) for in case of all designed control mixtures type as when
compared to impregnation concrete cubes (M1CC-M1SB:4.13-0.67, M1CC-M1WB:3.32-0.20, M2CC-M2SB:2.62-0.53, M2CC-
M2WB:1.50-0.25, M3CC-M3SB:0.23-0.11, M3CC-M3WB:-0.32-0.12, M4CC-M4SB:4.77-0.90, M4CC-M4WB:13.65-4.03, M5CC-
M5SB:28.33-16.07, M5CC-M5WB:7.93-6.32, M6CC-M6SB:13.10-0.11, M6CC-M6WB:6.07-0.39, and M1WB-M1SB:0.83-0.87, M2WB-
M2SB:1.00-0.29, and M3WB-M3SB:0.55-0.01, M4WB-M4SB: 7.81-3.00, M5WB-M5SB: 39.38-23.90, M6WB-M6SB: 7.49-0.28)%. The
diffusion coefficient is initially increased which may be due to concentration gradient. Variation of chloride diffusion coefficient in
impregnation concrete cubes for in case of different mixture type (M1SB-M6SB) is as shown in Figs.2a-2f respectively. Chloride
diffusion coefficient is directly correlated to the square root of time by power type of equation in all designed impregnation
mixtures type (M1SB-M6SB).
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The chloride diffusion coefficient is increased at time interval (2.23 min) as when compared to time interval (173.89 min) for in
case of all designed control mixtures type as when compared to impregnation concrete cubes (MTWB-M2WB:5.37-0.58, MTWB-
M3WB:1.60-0.43, M1WB-M4WB:2.66-2.98, M1WB-M5WB:9.55-5.06, M1WB-M6WB:6.47-0.63, M2WB-M3WB:-3.98-0.16, M2WB-
M4WB:2.87-3.59, M2WB-M5WB:4.42-4.50, M2WB-M6WB:1.17-0.05, M3WB-M4WB:1.07-3.42, M3WB-M5WB:8.07-4.66, M3WB-
M6WB:4.95-0.21, and M4WB-M6WB:7.08-7.81, MAWB-M6WB:3.92-3.51, and M5WB-M6WB:3.40-4.67)%. The diffusion coefficient is
initially increased which may be due to concentration gradient. Variation of chloride diffusion coefficient in impregnation concrete
cubes for in case of different mixture type (MTWB-M6WB) is as shown in Figs.3a-3f respectively. Chloride diffusion coefficient is
directly correlated to the square root of time by power type of equation in all designed impregnation mixtures type (MTWB-M6WB).
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The variation of chloride solution absorption content (Mt) at any particular time duration to chloride solution absorption content
(Meo) at an infinite time duration is studied in the present research work for in the case of designed control mixtures type (M1CC-
M6CC) at different time duration in ordered to obtain chloride diffusion coefficient which is represented as shown in Fig.4a-4f and
this chloride solution absorption content ratio is correlated with square root of time by linear type of equation in all control
designed mixtures type (M1CC-M6CC). The chloride solution absorption content ratio was depends on factors such as square root of
time, and material thickness, diffusion coefficient, mixture proportion, compactness of concrete matrix, quantity of fine and coarse
aggregate, slump value, and fineness of cement. The chloride solution absorption content (Mt) at particular time duration depends
on time, lesser/more the time, lesser/more chloride solution content availability in concrete matrix which depends on the pore
structure formation, aggregates volume fraction, w-c ratio, slump, and compressive strength. As observed from the results that, the
chloride solution absorption content ratio was varied and compared at different time duration (0 min) to time interval (34560 min)
for in case of control mixtures type [M1CC-M2CC:18.92-0.27, M1CC-M3CC:8.93-0.20, M1CC-M4CC:31.42-1.59, M1CC-M5CC:9.78-(-
3.13), M1CC-M6CC:7.33-0.08, M2CC-M3CC:-12.32-(-0.07), M2CC-M4CC:15.42-1.33, M2CC-M5CC:11.26-(-3.41), M2CC-M6CC:-14.29-
(-0.19), M3CC-M4CC:24.70-1.39, M3CC-M5CC:0.94-(-3.34), M3CC-M6CC:-1.75-(-0.12), M4CC-M5CC:31.55-(-4.80), M4CC-M6CC:-
35.12-(-1.54), and M5CC-M6CC:-2.72-3.11] respectively.

108 119
1M | 1 199
- i M=o 003 i+0{784 =)
E AP =07 . z P M=== 0,202 1+ D.ALE
5 | z fun: :
< oo - P “ Fl=oau .
2 & P R T W
B g H .
. »
B . £ .
= 094 = -
- .
g T
@ . s
oo 3
B E
2 z
w . Yo
08¢ | { te”
- ]
. g
ore A ] . 1
. = P
P 4
o7 C 059
L 20 @0 B0 BO 100 120 1a0 160 180 200 [ ] 0 40 (2 B 100 1N 140 160 130 00
Time, Time, vt
Chigride. in in control DCC Chieride content ratio in control DOC concrete cubes

Fig.4a CI" content ratio-time in mix M1

Fig.4b ClI- content ratio-time in mix M2

Page3 2 1



ARTICLE

s
1.08
114
1.03
8 Pt Mem= 0002 1+ 0,582 & -
= 20898 2 104 =
:  m " r— = W Moe= 002 1+ 8. 592 ///
K] . 2 =088 e
B 093 - g s .
] 2 - B
] £ ~
H +
g 063 = 3 -
2 g =
H 5 ~
s = 5 e
~
o7 -
0.7 1 ///
= |~
- [ -l
073 ~ ’///
. o
] &
068 054
] 20 ] & 0 100 110 190 160 130 200 [ 0 0 60 80 100 120 140 150 180 200
Time, W Thue, 7t
Chioride costent ratio in control DIC concrete cubes. Chloride content rtio in comral DCC concnete cubes
Fig.4c CI content ratio-time in mix M3 Fig.4d Cl- content ratio-time in mix M4
116 1408
g wm o | | |
z £ M/t o (.00 (10 536 -
- L MM 0,000 10489 e = i e =
= R =042 1 . E e
T | r £ .
£ £ h i
-E 036 L] E 053 B -
g - ] s
E] 051 ) [ 5=
5 E .
5 H p
H nam o =T s (X1
08
0.78
0m - .
fle [RE] ‘.:‘
0L — o
0,65 aemmt 063 S
[ ] 20 - 60 B 100 1in 140 160 120 W0 o o a0 &0 & 100 120 140 160 180 00
Time, Wt Time, A
Chioride sontent ratic in cantrel DOC concrete cubes Chioride cantent in cantrol DOC concrit cubss

Fig.4e CI" content ratio-time in mix M5

Fig.4f Cl content ratio-time in mix M6

The chloride solution absorption content (Mt) at particular time duration depends on time, lesser/more the time, lesser/more
chloride solution content availability in concrete matrix which depends on the pore structure formation, aggregates volume fraction,
w-c ratio, slump, and compressive strength. As observed from the results that, the chloride solution absorption content ratio was
varied and compared at time duration (0 min) to time interval (34560 min) for in case of control mixtures type [M1SB-M2SB:7.11-
0.00, M1SB-M3SB:0.46-(-0.93), M1SB-M4SB:18.10-(-1.55), M1SB-M5SB:61.64-(-40.82), M1SB-M6SB:-23.87-(-1.05), M2SB-M3SB:-7.16-
(-0.92), M2SB-M4SB:-11.83-(-1.55), M2SB-M5SB:74.01-(-40.82), M2SB-M6SB:-18.05-(-1.05), M3SB-M4SB:17.72-(-0.62), M3SB-
M5SB:62.39-(-39.53), M3SB-M6SB:-23.52-(-0.12), M4SB-M5SB:97.37-(-38.67), M4SB-M6SB:7.05-0.49, and M5SB-M6SB:-52.90-28.24]
respectively. The variation of chloride solution absorption content (Mt) at any particular time duration to chloride solution
absorption content (Mco) at an infinite time duration is studied in the present research work for in the case of designed
impregnation mixtures type (M1SB-M6SB) at different time duration which is represented as shown in Fig.5a-5f.The variation of
chloride solution absorption content ratio coefficient is co-related with square root of time by linear type of equation in
impregnation concrete cubes for in case of all impregnation designed mixtures type (M1SB-M6SB) .
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Fig.5e CI" content ratio-time in mix M5

Fig.5f ClI- content ratio-time in mix M6

As observed from the results that, the chloride solution absorption content ratio was varied and compared at time duration (0
min) to time interval (34560 min) for in case of control mixtures type [M1WB-M2WB:10.45-1.17, MTWB-M3WB8:3.18-0.85, M1WB-
M4WB:5.24-(-6.06), MT1WB-M5WB:18.18-9.87), MTWB-M6WB:12.53-1.26, M2WB-M3WB:-8.11-(-0.32), M2WB-M4WB:-5.81-(-7.31),
M2WB-M5WB:8.64-8.80), M2WB-M6WB:2.32-0.09, M3WB-M4WB:2.12-(-6.97), M3WB-M5WB:15.49-9.09, M3WB-M6WB:9.65-0.41,
M4WB-M5WB:13.66-15.02, MAWB-M6WB:7.69-6.90, and M5WB-M6WB:-6.91-(-9.55)] respectively. The variation of chloride solution
absorption content (Mt) at any particular time duration to chloride solution absorption content (M) at an infinite time duration is
interpreted and compared in this present research work for in the case of designed impregnation mixtures type (MTWB-M6WB) at
different time duration which is represented as shown in Fig.6a-6f.The variation of chloride solution absorption content ratio
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coefficient is co-related with square root of time was represented by linear type of equation in all impregnation designed concrete

mixtures type (MTWB-M6WB).
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Fig.6e Cl" conent ratio-time in mix M5

Fig.6f Cl- content ratio-time in mix M6

As observed from the results that, the chloride diffusion coefficient was predicted based on chloride solution absorption at
particular time duration (Mt) to chloride solution absorption at infinite time duration (M) for different time duration (0 min) up to
time interval (34560 min). The chloride diffusion coefficient was varied in the control concrete cubes (M1CC:3.81-0.50, M2CC:3.43-
0.50, M3CC:3.64-0.50, M4CC:3.16-0.50, M5CC:3.62-0.51, and M6CC:3.67-0.50), impregnation concrete cubes [(M1SB:3.61-0.50,
M2SB:3.52-0.50, M3SB:3.65-0.50, M4SB:3.31-0.50), M5SB:4.65-0.59, M6SB:3.19-0.50, M1WB:3.69-0.50, M2WB:3.49-0.50, M3WB:3.63-
0.50, M4WB:3.59-0.52, M5WB:3.34-0.48, M6WB:3.45-0.50] mm?/min respectively.
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The variation of chloride diffusion coefficient at specified time duration (2.23 min up to 173.89 min) was interpreted in the
control (M1CC-M6CC) and impregnation (M1SB-M6SB, M1WB-M6WB) concrete cubes at different time duration as shown in Fig.7a.
The chloride diffusion coefficient was predicted based on chloride solution absorption at different time duration (0 min) up to time

interval (34560 min). The chloride diffusion coefficient was increased in the control concrete cubes as when compared to
impregnation concrete cubes (M1CC-M1SB:4.13-0.67, M2CC-M2SB:2.62-0.53, M3CC-M3SB:-0.23-0.53, M4CC-M4SB:-4.77-(-0.90),
M5CC-M5SB:-28.33-(-16.07, and M6CC-M6SB:13.10-0.11, M1CC-M1WB:3.32-(-0.20), M2CC-M2WB:-1.60-0.25, M3CC-M3WB:0.32-
0.12, M4CC-M4WB:-13.65-(-4.03), M5C-M5WB:7.93-6.32, M6CC-M6WB:6.07-0.39, M1WB-M1SB:0.83-0.07, M2WB-M2SB:-1-0.29,
M3WB-M3SB:-0.55-(-0.01), M4WB-M4SB:7.81-3.00, M5WB-M5SB:-39.28-(-23.90), M6WB-M6SB:7.49-(-0.28)] mm?/min respectively.
The variation of chloride diffusion coefficient at specified time duration (2.23 min up to 173.89 min) was interpreted in the control
(M1CC-M6CC) and impregnation (M1SB-M6SB, M1WB-M6WB) concrete cubes at different time duration as shown in Fig.7b.

The chloride diffusion coefficient was decreased in the impregnation concrete cubes as when compared to control concrete
cubes (M1SB-M1CC:95.87-99.33, M1WB-M1CC:96.68-100.20, M2SB-M2CC:102.62-99.47, M2WB-M2CC:101-99.75, M3SB-
M3CC:100.23-99.89, and M3WB-M3CC:99.68-99.88, M4SB-M4CC:104.77-100.90, M4WB-M4CC:113.65-104.03, M5SB-M5CC:128.33-
116.07, M5WB-M5CC:92.07-93.68, M6SB-M6CC:86.90-99.89, M6WB-M6CC:99.93-99.61, M1SB-M1WB:99.17-99.13, M2SB-
M2WB:101-99.71, M3SB-M3WB:100.55-100.01, M4SB-M4WB:92.19-97.00, M5SB-M5WB:139.38-123.90, M6SB-M6WB:92.51-100.28)
mm?/min respectively. The variation of chloride diffusion coefficient at specified time duration (2.23 min up to 173.89 min) was
interpreted in the control (M1CC-M6CC) and impregnation (M1SB-M6SB, MTWB-M6WB) concrete cubes at different time duration
as shown in Fig.7c. The chloride diffusion coefficient was increased in the control concrete cubes [(M1CC-M2CC:4.13-0.14, M1CC-
M3CC:3.32-0.10, M1CC-M4CC:-9.95-0.80, M1CC-M5CC:-7.60-(-1.55), M1CC-M6CC:8.51-0.04, and M2CC-M3CC:-0.84-(-0.03), M2CC-
M4CC:6.08-0.67, M2CC-M5CC:3.62-(-1.69), M2CC-M6CC:4.57-(-0.10), M3CC-M4CC:6.86-0.70, M3CC-M5CC:4.42-(1.66), M3CC-
M6CC:5.33-(-0.06), M4CC-M5CC:-2.62-(-2.37), M4CC-M6CC:-1.60-(-0.77), M5CC-M6CC:0.99-1.57)] mm?*/min respectively. The
variation of chloride diffusion coefficient at specified time duration (2.23 min up to 173.89 min) was interpreted in the control
(M1CC-M6CC) concrete cubes as shown in Fig.7d. The chloride diffusion coefficient was increased in the impregnation concrete
cubes as when compared to different impregnation concrete cubes [(M1SB-M2SB:3.62-0.00, M1SB-M3SB:0.23-(-0.46), M1SB-
M4SB:9.50-(-0.77), M1SB-M5SB:-27.14-(-18.67), M1SB-M6SB:12.75-(-0.52), and M2SB-M3SB:-3.52-(-0.46), M2SB-M4SB:6.10-(-0.77),
M2SB-M5SB:-31.91-(-18.67), M2SB-M6SB:9.47-(-0.52), M3SB-M4SB:9.29-(-0.31), M3SB-M5SB:-27.43-(-18.12), M3SB-M6SB:12.55-(-
0.61), M4SB-M5SB:-40.49-(-17.76), M4SB-M6SB:3.59-0.25, M5SB-M6SB:31.37-15.29)] mm?/min respectively. The variation of chloride
diffusion coefficient at specified time duration (2.23 min up to 173.89 min) was interpreted in the impregnation (M1SB-M6SB)
concrete cubes at different time duration as shown in Fig.7e. The chloride diffusion coefficient was increased in the impregnation
concrete cubes [(MTWB-M2WB:5.37-0.58, MTWB-M3WB:1.60-0.43, MTWB-M4WB:2.66-(-2.98), M1WB-M5WB:9.55-5.06, M1WB-
M6WB:6.47-0.63, and M2WB-M3WB:-3.98-(-0.16), M2WB-M4WB:-2.87-(-3.59), M2WB-M5WB:-4.42-4.50, M2WB-M6WBB:1.17-0.05,
M3WB-M4WB:1.07-(-3.42), M3WB-M5WB:8.07-4.66, M3WB-M6WB:4.95-0.21, M4WB-M5WB:7.08-7.81, M4WB-M6WB:3.92-3.51),
M5WB-M6WB:3.48-(-4.67)] mm?/min respectively. The variation of chloride diffusion coefficient at specified time duration (2.23 min
up to 173.89 min) was interpreted in the control (MTWB-M6WB) concrete cubes as shown in Fig.7f.

The chloride solution absorption ratio was increased in the control concrete cubes as when compared to impregnation
concrete cubes [M1CC-M1SB:8.08-1.34, M1CC-M1WB:6.53-(-0.41), M2CC-M2SB:-5.30-1.07, M2MCC-M2WB:-3.24-0.49, M3CC-
M3SB:-0.46-0.22, and M3CC-M3WB:0.63-0.24, M4CC-M4SB:-9.77-(-1.81), M4CC-M4WB:-29.15-(-8.22), M5CC-M5SB:-64.69-(-24.73),
M5CC-M5WB:15.23-12.24, M6CC-M6SB:24.49-0.22, M6CC-M6WB:11.77-0.77, M1WB-M1SB:1.66-1.74, M2WB-M2SB:-2.00-0.58,
M3WB-M3SB:-1.10-(-0.02), M4WB-M4SB:15.01-5.92), M5WB-M5SB:-94.28-(-53.52),  M6WB-M6SB:14.42-(-0.66)]  mm?/min
respectively. The variation of chloride solution absorption ratio at specified time duration (2.23 min up to 173.89 min) was
interpreted in the control (M1CC-M6CC) and impregnation concrete cubes (M1SB-M6SB and M1WB-M6WB) concrete cubes as
shown in Fig.7g. The chloride solution absorption ratio was decreased in the impregnation concrete cubes [(M1SB-M1CC:91.92-
98.66, MTWB-M1CC:93.47-100.41, M2SB-M2CC:105.30-98.93), M2WB-M2CC:103.24-99.51, M3SB-M3CC:100.46-99.78, and M3WB-
M3CC:99.37-99.76, M4SB-M4CC:100.77-101.81, M4WB-M4CC:-129.15-108.22, M5SB-M5CC:164.69-134.73, M5WB-M5CC:84.77-
87.76, M6SB-M6CC:75.51-99.78, M6WB-M6CC:88.23-99.23, M1SB-M1WB:98.34-99.26, M2SB-M2WB:102.00-99.42, M3SB-
M3WB:101.10-100.02, M4SB-M4WB:84.79-94.08, M5SB-M5WB:194.28-153.52, and M6SB-M6WB:85.58-100.56] mm?/min as when
compared to control concrete cubes (M1CC-M6CC) respectively. The variation of chloride diffusion coefficient at specified time
duration (2.23 min up to 173.89 min) was interpreted in the control (MTWB-M6WB) concrete cubes as shown in Fig.7h.
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Fig.7d CI- diffusion coefficient-time in DCC/CC cubes
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Fig.7j ClI- solution absorption ratio-time in DCC/SB cubes
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The chloride solution absorption ratio was increased in the control concrete cubes as when compared to different control
concrete mixture types [M1CC-M2CC:18.92-0.27, M1CC-M3CC:8.93-0.20, M1CC-M4CC:31.42-1.59, M1CC-M5CC:-9.78-(-3.13),
M1CC-M6CC:.7.33-0.08, and M2CC-M3CC:-12.32-(-0.07), M2CC-M4CC:15.42-1.33, M2CC-M5CC:-11.26-(-3.41), M2CC-M6CC:-14.29-
(-0.19), M3CC-M4CC:24.70-1.39, M3CC-M5CC:0.94-(-3.34), M3CC-M6CC:-1.75-(-0.12), M4CC-M5CC:-31.55-(-4.80), M4CC-M6CC:-
31.12-(-1.54), M5CC-M6CC:-2.72-3.11] mm?/min respectively. The variation of chloride solution absorption ratio at specified time
duration (2.23 min up to 173.89 min) was interpreted in the control (M1CC-M6CC) concrete cubes as shown in Fig.7i. The chloride
solution absorption ratio was increased in the impregnation concrete cubes as when compared to different designed impregnation
concrete cubes [M1SB-M2SB:7.11-0.00, M1SB-M3SB:0.46-(-0.93), M1SB-M4SB:18.10-(-1.56), M1SB-M5SB:-61.64-(-40.82), M1SB-
M6SB:23.87-(-1.05), and M2SB-M3SB:-7.16-(-0.92), M2SB-M4SB:11.83-(-1.55), M2SB-M5SB:-74.07-(-40.82), M2SB-M6SB:18.05-(-
1.05), M3SB-M4SB:17.72-(-0.62), M3SB-M5SB:-62.39-(-39.53), M3SB-M6SB:23.52-(-0.12), M4SB-M5SB:-97.37-(-38.67), MA4SB-
M6SB:7.05-0.49, M5SB-M6SB:52.90-28.24] mm?/min respectively. The variation of chloride solution absorption ratio at specified time
duration (2.23 min up to 173.89 min) was interpreted in the impregnation concrete cubes (M1SB-M6SB) as shown in Fig.7j.
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Fig.7k ClI- solution absorption ratio-time in DCC/WB cubes

The chloride solution absorption ratio was increased in the impregnation concrete cubes as when compared to different
designed impregnation concrete cubes [M1WB-M2WB:10.45-1.17, MTWB-M3WB:3.18-0.85, M1WB-M4WB:5.24-(-6.06), MTWB-
M5WB:18.18-9.87, M1TWB-M6WB:12.63-1.26, and M2WB-M3WB:-8.11-(-0.32), M2WB-M4WB:-5.81-(-7.31), M2WB-M5WB:8.64-8.80,
M2WB-M6WB:2.32-0.09, M3WB-M4WB:2.12-(-6.97), M3WB-M5WB:15.49-9.09, M3WB-M6WB:9.65-0.41, M4WB-M5WB:13.66-15.02,
M4WB-M6WB:7.69-6.90, M5WB-M6WB:-6.91-(-9.55)] mm?/min respectively. The variation of chloride solution absorption ratio at
specified time duration (2.23 min up to 173.89 min) was interpreted in the impregnation concrete cubes (MTWB-M6WB) as shown in
Fig.7k.
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5. CONCLUSION

The chloride diffusion coefficient is co-related with square root of time by power type of equation in control/impregnation concrete
cubes. Chloride diffusion coefficient is initially increased, which may be due to concentration gradient. Concentration gradient is

more at an initial time duration, due to that the rate of absorption is also more, once the pore structure is fully saturated, the rate of

diffusion coefficient goes on decreases with time duration. Thus the concentration gradient is more at an initial stage, goes on
decreases as time passes and thus diffusion coefficient is reduced gradually as time in turn reaches equilibrium state. It's also

possible to correlate the variation of chloride solution absorption content ratio with square root of time by linear type of equation.
From this relationship it's possible to predict chloride diffusion coefficient at any time duration based on chloride solution

absorption in control/impregnation concrete cubes.
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