
                                                                                                                      

 

 
 

ARTICLE 

P
ag

e2
0

9
 

RESEARCH 

 

 

 

 

On the action of mobile loads on an 

uninterrupted cylindrical tunnel 
 

Akhmedov Maqsud Sharipovich☼, Aslonov Bakhtiyor, Orripov Zayniddin, 

Adizova Aziza 
 

Bukhara Technological- Institute of Engineering, Bukhara, 15, K. Murtazoyev Street.  Republic of Uzbekistan 

 

☼Corresponding Author:  

Bukhara Technological- Institute of Engineering,  

Bukhara, 15, K. Murtazoyev Street.  

Republic of Uzbekistan.  

E-mail:  maqsud.axmedov.1985@mail.ru 

 

Article History 

Received: 24 April 2018 

Accepted: 20 June 2018 

Published: July 2018 

 

Citation 

Akhmedov Maqsud Sharipovich, Aslonov Bakhtiyor, Orripov Zayniddin, Adizova Aziza. On the action of mobile loads on an 

uninterrupted cylindrical tunnel. Indian Journal of Engineering, 2018, 15, 209-218 

 

Publication License 

 © The Author(s) 2018. Open Access. This article is licensed under a Creative Commons Attribution License 4.0 (CC BY 4.0). 

 

 General Note 

 Article is recommended to print as color digital version in recycled paper.

 

 

ABSTRACT 

The stationary transport load acts on the surface of the cavity or on the inner surface of the shell reinforcing cavity. The speed of the 

load movement is assumed to be subsonic, which corresponds to the modern transport speeds in the underground facilities under 

study. To describe the motion of a half-space and thick-walled shells, dynamic equations of the theory of elasticity in Lamé 

potentials are used, and for thin-walled shells, the classical equations of the theory of thin shells are used. Equations are recorded in 

the moving coordinate system associated with the load. 
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1. INTRODUCTION 

In the theoretical aspect, the solution was based on the works [1,2,3]. In [4], the first and second boundary-value problems of the 

theory of elasticity for a half-plane with a point source of stationary waves concentrated within it, the potential of which is 

represented in terms of cylindrical functions, are solved by the method of expanding potentials on plane waves. And in [5], using this 

approach, the problem of the stationary load on the contour of a circular hole in a half-space was solved. Using the idea of these 

papers on the superposition of solutions and the re-expansion of plane waves into series in cylindrical functions, in [6], in contrast to 

the exact analytical solution for the subsonic case, when the velocity of the moving load is less than the velocity of the Rayleigh 

waves. 

 

Statement of the problem for a circular tunnel 

Using the model approach for research, we will represent the tunnel as an infinitely long circular cylindrical cavity with a radius r = R, 

located in a linear viscoelastic, homogeneous and isotropic half-space x ≤ h (Figure 1) parallel to its horizontal boundary (the earth's 

surface). We define the reaction of a half-space on a moving with a constant subsonic velocity c along the cavity surface in the 

direction of the load axis Z Р. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 The calculated scheme of a reinforced tunnel 

 

For this, we use the equations of motion of an elastic medium in vector form [9, 10] 
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Here ),,( zуx uuuu - vector of displacement of points of the medium;  - material density; u – displacement components; 

jv  - Poisson's ratio; 
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( )t – arbitrary time function; ( )−tRE – relaxation core; 01E – instantaneous modulus of elasticity; We assume the integral 

terms in (5) to be small, then the functions ( ) ( ) ti Rett
 −

= , where ( )t - a slowly varying function of time, R - real constant. 

Further, applying the freezing procedure [13], we note relations (2) as approximations of the form  

 

                                     ( ) ( )  R

S

R

С iEE −−= 1 ,  

 

where   ( ) ( )


=
0

cos  dR RR

C
,   ( ) ( )



=
0

sin  dR RR

S
, respectively, the cosine and sine Fourier images of the 

relaxation core of the material. As an example of a viscoelastic material, we take three parametric relaxation nuclei

( )  −−= 1/ tAetR t
. On the influence function 𝑅(𝑡 − 𝜏) the usual requirements of inerrability, continuity (except for 𝑡 =

𝜏), sign of uncertainty and monotony: 

 

𝑅 > 0,
𝑑𝑅(𝑡)

𝑑𝑡
≤ 0,   0 < ∫ 𝑅(𝑡)𝑑𝑡 < 1

∞

0

. 

 

 u


 - the vector of displacements of the environment. 

 

Since the steady-state process is considered, the strain pattern is stationary with respect to the moving load. Therefore, it is 

convenient to move to a moving coordinate system  = z – ct, connected with the load P. 

Then equation (1) can be rewritten in the form 
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2. TASKS OF THE ACTION OF MOBILE LOADS ON AN UNREINFORCED TUNNEL 

In the theoretical aspect, the solution was based on the papers [15, 16]. In [14], the first and second boundary-value problems of the 

theory of elasticity for a half-plane with a point source of stationary waves concentrated within it, the potential of which is 

represented in terms of cylindrical functions, are solved by the method of expanding potentials on plane waves. And in [15], using 

this approach, the problem of the stationary load on the contour of a circular hole in a half-space was solved. Using the idea of 

these papers on the superposition of solutions and the re-expansion of plane waves into series in cylindrical functions, in [16], in 

contrast to the exact analytical solution for the subsonic case, when the velocity of a moving load is less than the velocity of the 

Rayleigh waves. 

 

3. STATEMENT OF THE PROBLEM FOR A CIRCULAR TUNNEL 

Using the model approach for research, we will represent the tunnel as an infinitely long circular cylindrical cavity with a radius r = R, 

located in a linear viscoelastic, homogeneous and isotropic half-space x ≤ h (Figure 1) parallel to its horizontal boundary (the earth's 

surface). We define the reaction of a half-space on a moving with a constant subsonic velocity c along the surface of the cavity in the 

direction of the Z-axis of the load P. 

Since the steady-state process is considered, the strain pattern is stationary with respect to the moving load. Therefore, it is 

convenient to move to the mobile coordinate system  = z – ct, connected with the load P. 
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Then equation (1) can be rewritten in the form 
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Here Mp = c/cp, Ms = c/cs – Mach numbers; ( )  2+=pc , =sc  – complex propagation velocities of expansion 

waves - compression and shear in a medium. 

 

When the load acts on the cavity surface, we have 

== = ,,),,( rjPjRrrj , (5) 

 

where rj – components of the stress tensor in a medium, Pj(,) – components of the intensity of the mobile load P(,). 

Since the boundary of the half-space is free from loads, x = h 

 

0=== xxyxx . (6) 

 

We transform equation (1) by expressing the displacement vector of an elastic medium through Lame potentials 

 

rotgrad 1 +=u . (7) 

 

Potential  can be represented in the form [7] 

 

 ( ) += ee 32 rot ,  (8) 

 

where e – ort axis . 

 

With this in mind, (5) takes the form 

 

 ( ) ( ) ++= eeu 321 rotrotrotdivgrad . (9) 

 

It follows from (3) and (8) that the potentials j  satisfy the modified wave equations 

 

3,2,1,
2

2
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= jM

j

jj . (10) 

 

Here  М1 = Мp, М2 = М3 = Мs. 

  

We express the components of the stress-strain state (VAT) of the medium through the potentials j. 

 

The components of the vector u (7) in cylindrical (8) and Cartesian (9) coordinate systems [17]: 
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 Using Hooke's law, taking into account (9), (11), we find expressions for the stress tensor components in cylindrical and 

Cartesian coordinates 
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 Thus, to determine the components of the stress-strain state of the medium, it is necessary to solve equations (9) together 

with the boundary conditions. 

 

In the moving coordinate system, we apply to the equations of motion and the boundary conditions a complex Fourier transform of 

the form [16] 
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Writing general solutions of the transformed equations of motion of the tunnel in the form (4) - (14), we find the following system of 

algebraic equations for determining the dimensionless trans formants of displacements of an intermediate surface  
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The stress at the boundary of the soft layer and elastic among (r = b) in the dimensionless form has the form: 
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Here  = ρ/ρв  is the ratio of the density of the environment to the density of the soft layer; 

−−

 ,  - are functions of  and .  

We find the following expression for the load transformer, which is transferred to the shell from the side of the soft layer   
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Elements of the determinant keAdet
 
is computed then formula ;2 111 MA −= ;1112 aA −=  ;1213 nMA =   
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( ) ( );/* 22201323 zIzIAA = ( ) ( );/* 21101324 zkzkAA = ;
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 110
kk   - modified Neumann functions; 110

II  - modified Bessel functions; The general solution of the equations of the 

motion of the environment has the form ( )pSf CCC 
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The expression for the trans formant of normal displacement has the form 
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Define  ( )5.......2.1= jj      is obtained from  keAdet   by replacing j = 20 by the column C with the elements {0; 0; 1; 0; 0}. 
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−iem  minors of the element      Аje.   For a specific value of the load velocity C, the denominators under the integral expressions in 

formulas (14) are transcendental functions with respect to  С real coefficients depending on C, as well as on the mechanical 

parameters of the shell and the layer. Analysis of the integrals of treatment must begin with consideration of cases      

( ) ,0, 0 =CD     which is equivalent to the construction of the dispersion relation in the corresponding problem of propagation of 

free waves and the determination of the denominator from the dispersion curves of the roots for the chosen velocity of the load C. 

at С< С5 are possible for cases. Figure 2 shows the change in the movement of the filler, depending on the thickness of the bodies 

for different values of the rigidity of the aggregate. As can be seen from the drawing ( = 100, 50,10,2), that for a sufficiently rigid 

layer ( = 100), the deflections of the shell essentially decrease. 

 

W* 

 

 

Figure 2 Shell deflections as a function of thickness 

 

1. For a given speed C, there are one or two different denominator roots. 

2. For some values of C, the denominator has a double root. This case corresponds to a minimum of the corresponding dispersion 

curve in Fig. Such a velocity is called resonance and is denoted by Сх. A resonance effect appears, or which deflections and 

contact pressures tend to infinity. 

3. For a given value of C, the denominator has no roots on the real axis, as seen in Figure 2, this will be either, С<Сф (up to 

resonance mode). At this speed of motion, the inversion integrals are not special and can be found by effective numerical 

methods. 
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Dividing the integral (21) into two terms  

 

( )


=
0

10

1
dxw


       or     ( ) =

2

1
10

1 


dxw       (18)   

 

The value of the integral (18) was found numerically, using the Rmberg method [2]. When the integral is calculated by the Romberg 

method, it is necessary to repeatedly calculate the integrand function. The inverse Fourier transform (29) was numerically fulfilled. It 

is shown that at an integration step of 1.01, the error of the procedure does not exceed 0.3-0.5%.     

 

4. CONCLUSION 

1. To describe the behavior of viscoelastic materials with unstable properties that do not obey the principle of temperature-time 

analogy, the non-singular singular kernel of heredity is proposed. 

2. A universal algorithm for solving the problems is proposed. 
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