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ABSTRACT 

Considering as an electro-mechanical continuum and obtaining the variational form for smart cantilever beam with full length 

ferroelectric patch brazed at the upper and lower side of host aluminum core using higher order beam bending theory. The effect of 

nonlinearities viz body force in the equilibrium equation and non linear term in constitutive equation due distributed body couple 

introduced in basic formulation because of polarization and electric field coupling is analyzed for the case of actuation. The results 

indicate nonlinearities show a significant influence for higher values of actuation voltages. 
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1. INTRODUCTION 

Advances in materials have led to the demand for portable and high-performance control design of gadgets and devices and have 

given birth to use of smart or intelligent materials and/or structures. The evolution of substantial and economical high-achievement 

building materials and systems are essential for the economic health of a nation as human infrastructure cost amounts to a 

considerable chunk of national capital. In order to take care of the issue of degenerating structure, research of smart materials 

becomes mandatory. Use of such materials will not only improve the performance of the structure, reduce the maintenance costs, 

ensure or confirm that the structure is sustainable in future but will as well put forth the utilization of smart materials for most 

favourable achievement or performance and secured infrastructure designs particularly in seismic and other naturally hazardous 

prone zones. 

Smart is the new tech-savvy because smart materials may work completely on their own as a part of the larger smart system. In 

principle, these systems interconvert the fundamental energy forms viz electric, sound thermal, mechanical, magnetic etc. Smartness 

may range from passive to sensible depending upon its responsiveness. Smartness makes certain that under a variety of 

environmental conditions the system is not only giving the most favourable performance but is smart enough to get suitably 

actuated to tackle abnormal loads as and when required much like its biological analogue that is a human body. 

 

1.1. Interactions in Ferroelectric Crystal 

Basically three kinds of physical behaviour prevail in a Ferroelectric crystal. They are piezoelectricity, pyroelectricity and thermo-

elasticity, as shown in the figure 1. An electric field in the electric domain generates piezoelectric stress in the mechanical domain, 

the two being related by the appropriate piezoelectric stress coefficient and is the converse, inverse or indirect piezoelectric effect. 

Similarly a strain in the mechanical domain generates the electric polarisation in the electrical domain, which in turn produces 

Electric field, the polarisation and Electric field being associated by dielectric susceptibility. In an akin manner, a temperature 

differential in the thermal domain and polarisation in the electrical domain are affiliated by pyroelectric constant; the arrowed path 

from electric field to heat indicates the electro-caloric effect (The generation of an amount of heat δQ on implementation of vector 

field), generally conveyed as a relationship between temperature differential and electric field. The coefficient of thermal expansion 

relating temperature differential ΔT with strain, the arrowed path relating stress to heat δQ indicates the thermo-elastic effect. The 

Constitutive equations link stress and strain in mechanical domain and specific heat relating the quantity of heat δQ and 

temperature differential in thermal domain. The small arrowed paths in electrical domain between polarisation P and electric field E 

indicating that polarisation may prevail by existence of electric field and vice versa in ferroelectric material. 

The three domains driving each other basically depict the direct or basic effect. However, in every instance there is the minimum 

of one other way over which the process can occur, of course the coupling coefficients are assumed to be non-zero for that specific 

process for the crystal or material to be considered. The roundabout indirect effects are called secondary effects. A classic example 

will be secondary pyroelectric effect owing to piezoelectric action, which is usually many times higher than the primary effect itself. 

The basic pyroelectric effect is specified by the arrowed path connecting temperature differential with polarization, that is material 

being polarized on being subjected to temperature differential. Whereas the secondary effect pursues the way temperature 

differential producing strain which in turn polarizes the material. The logic for this complexity is due to the reason that all 

pyroelectric crystals are also piezoelectric. Thus a temperature differential to an unconstrained crystal produces a strain 

(deformation) and this subsequently yields the secondary polarisation superimposed on the basic or primary pyroelectric 

polarisation. 

The foundation of thermodynamic theory of simple material was laid by Coleman (1964).A material which is considered simple is 

characterised as a continuous sequence wherein the stress at a specified interval of time is governed by previous strain applied. In 

order to fabricate the thermo-elastic problem theory, he utilized the basic principles of physics viz conservation of energy, 

conservation of mass, conservation of linear and angular momentum etc. 

The governing equation of thermo-elasticity are derived from the conjecture of dwindling memory (deformation and 

temperature consummated in the remote past has minimal effect on current values of stress, entropy, heat flux and energy than 

deformation and temperature which happened in the latest past). 

Boundary conditions were deduced by Eringen and Suhubi (1964), constitutive equations and basic field equations for a simple 

micro-elastic solid, taking into considerations rotations and 'micro' deformations. The duo have also taken care of inertial spin, 

surface tension higher order effects and stress moments in their formulation. Eringen (1966) has deducted constitutive equations, 

boundary conditions and equation of motion for a micro-polar fluid. These fluids are effected by micro rotational motions and spin 

inertia. Hence these type of fluids can support couple stresses and distributed body couples. Fluid equations have been acquired for 
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density, velocity and micro-rotation vector. Mindlin (1974) has derived equations with two dimensions for vibrations of piezoelectric 

crystal at higher frequency taking into consideration, electric potential, mechanical displacement and temperature change. Field 

variable have been extended to thickness in terms of power series. These field variable have been incorporated in a integral 

equation instead of putting them in variational form of virtual work. 

An energy dissipation function has also been inserted in the integral equation. Unique theory has been employed to find the 

unique solution of a single layer piezo plate for unknown field variable. 

A microscopic theory for the dynamic response of polycrystalline ferroelectric materials have been exhibited by Chen and Peerey 

(1979).Their formulation comprises of the effect of the change in magnitude of electric dipoles and orientation of domains leading 

to energy loss. The constitutive relation contain the history of the evolution of the temperature, strain and the electric field. 

Generalised thermo-elasticity theory applicable for piezoelectric materials have been revealed by Chandrasekharaiah (1988).The 

main thrust was on articulation for the generation of finite speed thermal signals. After Lagrangian formulation of continuum 

mechanics, Pak and Hermann (1986) have derived governing equations, constitutive relations and the boundary conditions for an 

elastic dielectric material. The interaction between electric field and polarisation in represented as a stress tensor denoted as 

Maxwell stress tensor. This phenomenon brings forth an equilibrium equation of a nonlinear body force term. 

Tierstern (1971) applied preliminary conservation laws of continuum physics to a macroscopic model in order to deduct the non-

linear governing equations of electro-thermo-elasticity. His presumption comprised of a simple material with overlapping inertia 

upon each other. He also deducted equilibrium equations via balancing forces, separating electronic continuum from material 

continuum under effect of external electric field. Applying the laws of thermodynamics to a continuum model, he derived the 

constitutive equations. He obtained exact boundary conditions using variational formulation, He highlighted that the objectives of 

interaction between electric field and material polarization is to render the stress tensor non symmetric and initiate in the 

equilibrium equation a non-linear body force term. 

 Kalpakidis and Massalas (1993) have elaborated the electro-thermo-elastic formulation of Tiersten (1971) by introducing quarter 

pole electric moments and the dependence of rate of change of absolute temperature with respect to time in the constitutive 

relations. They made their formulation on the basis of inequality in entropy production and invariable of the first law of 

thermodynamics, under rigid body rotation and translation. Taking the approach of Tiersten (1971), Venkatesan and Upadhyay 

(2002) have displayed the analysis of the smart structure using electro thermoelastic formulation. The effects of interaction between 

and polarisation and electric field have been reflected. 

Chen and Montgomery (1980) presented a microscopic theory based on domain switching under the influence of an external 

electric field to model the butterfly loop and the hysteresis loop observed in ferroelectric materials. The butterfly loop is observed in 

the variation of strain with respect to electric field and the hysteresis loop is observed when polarization is varied with respect to 

electric field. A non-linear rate law relating the alignment of dipoles with the direction of electric field has been formulated. Using 

the constitutive relations of the stress and electric displacement along with rate law, the authors have constituted hysteresis loop 

have been correlated with experimental results. 

Bassiouny et al (1988) exhibited a thermodynamical formulation capable of predicting electro-mechanical hysteresis effects in 

ferroelectric ceramics. This theory applies thermodynamic interval variables able to model both electric and plastic hysteresis effects. 

This is brought about by formulating evolution equation for residual electric polarisation, plastic strain and both electrical and 

mechanical hardening. Some of the samples have been investigated to evaluate the piezoelectric and electrostrictive couplings. 

Formulation for polarisation reversal in piezoelectric materials have been presented by Zhang and Rogers (1993) A ferroelectric 

material comprises of millions of domains, each of domain have thousands of unidirectional dipoles which are randomly oriented 

with regard to each other. On the application of strong DC electric field, polarisation vectors in domains get reoriented along the 

external field known as domain switching. This domain switching dynamics applies to model the hysteresis effects. Combination of 

phenomenological part and the microscopic properties have revealed to be good way to elaborate the non-linear induced strain 

field behaviour and electromechanical hysteresis. 

Jha et al., (2000) have devised a mathematical paradigm for hysteresis behaviour of piezoelectric materials. The very paradigm 

considers the effects of temperature, pressure and amplitude of the electric field on the shape of hysteresis curve.  

Using Helmholtz free energy second and first law of thermodynamics an expression of entropy production rate for ferroelectric  

hysteresis process has been derived by Crawley, E.F.,(1994). A distribution process has been assumed for domain orientation and 

respective distribution parameters are selected as the internal state variables. Using this formulation they have sculptured the 

hysteresis effects in ferroelectric materials. 

Last two decades the demand of designing and development of smart structure has been alarmingly increased, a holistic 

research activity have been observed in the open literature on the analysis of smart structure, broadly classified into three basic 
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classes-studies dealing with beams, plates and shells. A detailed summary on smart technology is briefed in Chopra, I., (2000) and 

described implementation of smart technology to rotor system of helicopter in detail. 

An overview of recent development in smart structures aimed at alleviating aero elastic response in helicopters has been 

elaborated by Friedman, P.P., (1997). In addition he exhibited the scaling laws associated with small scale model to full scale 

configuration. 

 

2. FORMULATION 

The electro-thermo-elastic interaction outcomes while modelling the performance of the ferroelectric continuum in a smart 

structure can be acquired about by establishing in a consistent manner the governing equations, constitutive equations and the 

boundary conditions. The electrical behaviour of the continuum is modelled in a quasi-static modus operandi taking into account 

only the laws of electro-statics as the continuums mechanical motion is by various orders smaller than the charge motion and thus 

enabling to neglect the electro-magnetic phenomena included with the motion of free charges and/or dipoles in insulators. 

The forces and moments that act on the polarised system are obtained by applying the concepts of electrostatics of dielectrics 

amalgamated in the thermo-mechanical modeling of the ferroelectric continuum. The governing equations are obtained by making 

use of the laws of conservations to the ferroelectric medium, while applying principles of thermodynamics, first and second laws will 

provide the necessary constitutive relations. 

 

 

Figure 1 

Interaction in Electro-Thermo-Elastic Domains 

 

 

The electro-thermo-elastic problem generates thirty five equations.  

One equation for conservation of Mass 

One equation for conservation of Energy 

Six equations (force and moment equations each three in number) of equilibrium 

One equation for Gauss law of electrostatics  

 

𝐷𝑖,𝑖 = 0 

Three equations for electric displacement in terms of electric field and polarisation vectors                                𝐷𝑗 = 𝜀0𝐸𝑗 + 𝑃𝑗 

 

Six equations of strain tensor in terms of displacements 

 

 𝜖𝑖𝑗 =
1

2
(
𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
+

𝜕𝑢𝑘

𝜕𝑥𝑖

𝜕𝑢𝑘

𝜕𝑥𝑗
) 
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Six equations for stress tensor in terms of strain tensor, polarisation vector, electric field vector and temperature    

 

𝜎𝑙𝑚 = 𝐶𝑙𝑚𝑝𝑞𝜖𝑝𝑞 − 𝑃𝑙𝐸𝑚 − 𝑒𝑙𝑚𝑗𝐸𝑗 − 𝛼𝑙𝑚𝜃 

 

One equation for rate of entropy production equation 

 

Three equations for electric displacement vector in terms of strain tensor, electric field vector and scalar temperature 

 

𝐷𝑖 = 𝑒𝑖𝑚𝑛𝜀𝑚𝑛 − 𝑏𝑖𝑛𝐸𝑛 − 𝜂𝑖𝜃 

 

Three equations for Electric field vector as gradient of scalar electric potential  

 

𝐸𝑗 = −𝜙,𝑗 

 

One equation for entropy in terms of strain tensor, electric field vector and temperature  

 

𝜆 = 𝛼𝑚𝑛𝜀𝑚𝑛 + 𝜂𝑛𝐸𝑛 + 𝐶𝜃𝜃 

 

Three equations for heat flux in terms of temperature gradient (Fourier Law)  

 

  𝑄𝑖 = −𝐾𝑖𝑙𝜃,𝑙 

 

With corresponding nineteen variables in Mechanical domain, ten variables in Electrical and five variables in Thermal domain:  

Mechanical Domain variables { one density (𝜌m) nine stress (𝝈ij) components, three Displacement components ( axial 

displacement u, displacement along depth v and transverse displacement w ) and six strain (𝜀ij) components)} 

Electrical Domain variables {Electric field (E) with three components along three directions), Electric displacement (D with DX, DY 

& DZ components), Polarisation (P with three components) and Electric potential (ϕ, one scalar)} 

Thermal Domain variables {Heat flux (Q, three components), Temperature differential (θ, one scalar) and Entropy (𝝀, one scalar)} 

For the randomly chosen ferroelectric material element of volume δV, the surrounding forces and moments per unit volume 

experienced by it are: 

 

Gravity force:  

 𝐵 ⃗⃗  ⃗ =  𝐵𝑙𝑒 ⃗⃗ 𝑙   

 

Near action force:  

𝐹 ⃗⃗  ⃗ = 𝐹𝑚𝑒 ⃗⃗ 𝑚 

 

Force because of polarisation of the medium: 

 𝐹 ⃗⃗  ⃗
𝑝 = ( 𝑃 ⃗⃗  ⃗ . 𝛻 ⃗⃗  ⃗)𝐸 ⃗⃗  ⃗ = 𝑃𝑙𝐸𝑖,𝑙  𝑒 ⃗⃗ 𝑖  

 

Force due to the existence of free charges in the polarised medium, if any: 

 ( ∇ ⃗⃗  ⃗. 𝐷 ⃗⃗  ⃗ ) 𝐸 ⃗⃗  ⃗ = 𝐷𝑖𝐸𝑗,𝑖𝑒 ⃗⃗ 𝑗    

 

Moment because of polarisation of the medium:  

−( 𝐸 ⃗⃗  ⃗  × 𝑃 )⃗⃗ ⃗⃗  ⃗ =  ϵ𝑖𝑗𝑘𝑒 ⃗⃗ 𝑖𝑃𝑗𝐸𝑘 

 

Suppose force due to existence of free charge is zero i.e., absence of any free charges in the continuum, then linear momentum 

principle in Eulerian coordinate system is: 
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∭𝐵𝑖 𝑒 ⃗⃗ 𝑖𝑑𝑉 + ∭𝐹𝑖𝑒 ⃗⃗ 𝑖 𝑑𝑉 + ∭𝑃𝑙𝐸𝑖,𝑙  𝑒 ⃗⃗ 𝑖 𝑑𝑉  =  𝐷𝑡 ∭𝜌 𝑚𝑣𝑖𝑒 ⃗⃗ 𝑖 𝑑𝑉  

 

Where integration is performed over an arbitrary portion of infinitesimal volume in the current deformed state of the domain Ω, let 

elemental volume has an absolute velocity 𝑣   and ρ m is the density in the deformed state.  

 

Using transport theorem for the time integral term & expanding time derivative term the above integral can be modified as: 

∭𝐹𝑖 𝑑𝑉 + ∭[𝐵𝑖 + 𝑃𝑙𝐸𝑖,𝑙]𝑑𝑉 =    ∭𝜌 𝑚
𝑑𝑣𝑖

𝑑𝑡
𝑑𝑉      𝑖 = 1,2,3 

 

The volume integral term corresponding to the near action force can be written in terms of derivatives of stress tensor in the 

deformed coordinate system.  

∭{𝐵𝑖 + 𝑃𝑙𝐸𝑖,𝑙 + 
𝜕𝜎𝑖𝑙

𝜕𝑥𝑙
   }𝑑𝑉 =   ∭𝜌 𝑚

𝑑𝑣𝑖

𝑑𝑡
𝑑𝑉       𝑖 = 1,2,3 

 

As this equality is applicable to any arbitrary chosen volume, the conservation of linear momentum equation can be written as: 

𝜕𝜎𝑖𝑙

𝜕𝑥𝑙
+ 𝐵𝑖 + 𝑃𝑙𝐸𝑖,𝑙 =  𝜌 𝑚

𝑑𝑣𝑖

𝑑𝑡
 

 

It is obvious that the peculiar attribute of a polarised dielectric medium is to introduce in the force equilibrium equations a non-

linear quantity PlEi,l due to the coupling of polarisation and electric field. Even in the non-existence of Bi, non-linear PlEi,l quantity 

exists. If this non-linear term is discarded then we get the equation of equilibrium for a non-polarised medium. In Vector form above 

equation is: 

 

𝑑𝑖𝑣𝜎𝑇 + 𝐵 ⃗⃗  ⃗ + ( 𝑃 ⃗⃗  ⃗ . 𝛻 ⃗⃗  ⃗)𝐸 ⃗⃗  ⃗ − 𝜌 𝑚
𝑑𝑣 ⃗⃗⃗  

𝑑𝑡
= 0  

For uniform electric field representing coupling of polarisation and electric field vanish. 

 

2.1. Constitutive Equations in Useful Form 

As quadratic form per unit mass of Helmholtz free energy can be expressed as:  

 

𝜒 = (2𝜌 𝑚 )
−1( 𝐶𝑚𝑛𝑘𝑙𝜀𝑚𝑛𝜀𝑘𝑙 − 𝑏𝑚𝑛𝐸𝑚𝐸𝑛 + 𝜌 𝑚 𝐶𝜃𝜃

2 − 2𝑒𝑚𝑛𝑘𝐸𝑚𝜀𝑛𝑘 + 2𝛼𝑚𝑛𝜀𝑚𝑛𝜃 + 2𝜂𝑚𝐸𝑚𝜃) 

 

Where different constant are Cmnkl elastic, bmn electric susceptibility, C𝜽 thermal, emnk piezoelectric, 𝜶mn thermoelastic, 𝜼m pyroelectric. 

Using this equation constitutive relations can be obtained as 

 

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑚𝑛𝜀𝑚𝑛 − 𝑒𝑖𝑗𝑙𝐸𝑙 − 𝛼𝑖𝑗𝜃 − 𝑃𝑖𝐸𝑗 

 

𝐷𝑖 = 𝑒𝑖𝑚𝑛𝜀𝑚𝑛 − 𝑏𝑖𝑛𝐸𝑛 − 𝜂𝑖𝜃 

 

𝜆 = 𝛼𝑚𝑛𝜀𝑚𝑛 + 𝜂𝑛𝐸𝑛 + 𝐶𝜃𝜃 

 

𝑄𝑖 = −𝐾𝑖𝑙𝜃,𝑙 

 

The tensor 𝝈ij can be divided into sum of linear and non linear   

 

 𝜎𝑖𝑗
𝐿    = 𝐶𝑖𝑗𝑚𝑛𝜀𝑚𝑛 − 𝑒𝑖𝑗𝑙𝐸𝑙 − 𝛼𝑖𝑗𝜃        

 

𝜎𝑖𝑗
𝑁𝐿 = −𝑃𝑖𝐸𝑗    
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Stress tensors  

 

2.2. Variational Formulation  

Consider a Ferroelectric Continuum in a domain V with boundary S. In order to obtain the variational formulation, the principle of 

virtual work is invoked  

 

∭(𝜎𝑖𝑙,𝑖 + 𝑃𝑖𝐸𝑙,𝑖) 𝛿𝑢𝑙 𝑑𝑉 + ∭𝐷𝑚,𝑚 𝛿𝜙𝑑𝑉 +
1

𝜃0
∭𝑄𝑘,𝑘𝛿𝜃 𝑑𝑉 = 0 

  

Where δul is the displacement variation, δ𝜙 is the electric potential variation and δθ is the temperature variation and 𝜽0 is the 

reference temperature. 

 

In the above equation steady state heat conduction has been assumed. This decouples the heat conduction and deformation 

interaction of the body. However deformation and electric potential will be induced due to temperature difference. In this study 

temperature difference θ is not an unknown variable but is an external load, above equation can be written as: 

 

∭
𝜕(𝜎𝑖𝑙𝛿𝑢𝑖)

𝜕𝑥𝑙
𝑑𝑉 − ∭𝜎𝑖𝑙

𝜕𝛿𝑢𝑖

𝜕𝑥𝑙
𝑑𝑉 + ∭

𝜕(𝐷𝑚𝛿𝜙)

𝜕𝑥𝑚
𝑑𝑉 − ∭𝐷𝑚

𝜕𝛿𝜙

𝜕𝑥𝑚
+

1

𝜃0
∭

𝜕(𝑄𝑘𝛿𝜃)

𝜕𝑥𝑘
𝑑𝑉 −

1

𝜃0
∭𝑄𝑘

𝜕𝛿𝜃

𝜕𝑥𝑘
𝑑𝑉

+ ∭𝑃𝑙𝐸𝑖,𝑙 𝛿𝑢𝑖𝑑𝑉 = 0 

 

∭𝑃𝑙𝐸𝑖,𝑙 𝛿𝑢𝑖𝑑𝑉     

 

 Constitute virtual work because of dispense non-linear force generated due to interaction of the vector electric field and the 

polarisation vector. Also, stress tensor 𝝈il  is non-symmetric and is given as:  

 

𝜎𝑖𝑙 = 𝜎𝑖𝑗
𝐿 + 𝜎𝑖𝑗

𝑁𝐿
     

 

Separating the linear and nonlinear parts in equation we get: 

 

∭
𝜕(𝜎𝑖𝑙𝛿𝑢𝑖)

𝜕𝑥𝑙
𝑑𝑉 − ∭𝜎𝑖𝑙

𝐿 𝜕𝛿𝑢𝑖

𝜕𝑥𝑙
𝑑𝑉 + ∭

𝜕(𝐷𝑚𝛿𝜙)

𝜕𝑥𝑚
𝑑𝑉 − ∭𝐷𝑚

𝜕𝛿𝜙

𝜕𝑥𝑚
+

1

𝜃0
∭

𝜕(𝑄𝑘𝛿𝜃)

𝜕𝑥𝑘
𝑑𝑉 −

1

𝜃0
∭𝑄𝑘

𝜕𝛿𝜃

𝜕𝑥𝑘
𝑑𝑉

− ∭𝑃𝑖 𝐸𝑗  
𝜕𝛿𝑢𝑖

𝜕𝑥𝑗
𝑑𝑉 + ∭𝑃𝑖 𝐸𝑖,𝑙𝛿𝑢𝑖𝑑𝑉 = 0 

 

Using Gauss divergence theorem and 

 

 
𝜕𝛿𝜙

𝜕𝑥𝑚
= −𝛿𝐸𝑚  

 

The equation simplifies to  

 

∭𝜎𝑖𝑙
𝐿 𝛿𝜀𝑖𝑙𝑑𝑉 − ∭𝐷𝑚 𝛿𝐸𝑚𝑑𝑉 +

1

𝜃0
∭𝑄𝑘

𝜕𝛿𝜃

𝜕𝑥𝑘
𝑑𝑉 + ∭𝑃𝑖 𝐸𝑖,𝑙𝛿𝑢𝑖𝑑𝑉 − ∭𝑃𝑖 𝐸𝑙𝛿

𝜕𝑢𝑖

𝜕𝑥𝑙
𝑑𝑉

= ∬(𝜎𝑖𝑙 𝑛𝑙𝛿𝑢𝑖 + 𝐷𝑖𝑛𝑖𝛿𝜙 + 
1

𝜃0
𝑄𝑖𝑛𝑖𝛿𝜃)𝑑𝐴 

 

From the right hand side it is obvious 

 

 𝜎𝑖𝑙𝑛𝑙 = 𝑇𝑖  
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The boundary traction applied, 

 

 𝐷𝑙𝑛𝑙 = 𝑞  

 

Surface charge density and 

 

 𝑄𝑙𝑛𝑙 = 𝑄𝑛 

 

 Vector heat flux perpendicular to boundary. 

 

∭𝜎𝑖𝑙
𝐿 𝛿𝜀𝑖𝑙𝑑𝑉 − ∭𝐷𝑚 𝛿𝐸𝑚𝑑𝑉 +

1

𝜃0
∭𝑄𝑘

𝜕𝛿𝜃

𝜕𝑥𝑘
𝑑𝑉 + ∭𝑃𝑖 𝐸𝑖,𝑙𝛿𝑢𝑖𝑑𝑉 − ∭𝑃𝑖 𝐸𝑙𝛿

𝜕𝑢𝑖

𝜕𝑥𝑙
𝑑𝑉

= ∬𝑇𝑖 𝛿𝑢𝑖𝑑𝐴 + ∬𝑞 𝛿𝜙 𝑑𝐴 + 
1

𝜃0
∬𝑄𝑛 𝛿𝜃𝑑𝐴 

 

2.3. Nonlinear electro-elastic analysis of a surface mounted beam 

The interaction of polarisation and electric field introduces two types of non-linearities in the smart structure, namely (i) a distributed 

non-linear force in equilibrium equation, this non-linearity arises due to variable electric field in piezo material and (ii) non-linear 

constitutive relation between stress-strain-electric field-polarisation equation this non-linearity is due to the presence of distributed 

body couple, Each case is presented separately in the following. 

 

2.3.1. Non-linearity due to Distributed Force 

In this Research, we assume 

 

 𝐸𝑦 = 0,
𝜕𝐸𝑥

𝜕𝑦
= 0,

𝜕𝐸𝑦

𝜕𝑦
= 0,

𝜕𝐸𝑧

𝜕𝑦
= 0,

𝜕𝐸𝑦

𝜕𝑧
= 0,

𝜕𝐸𝑦

𝜕𝑥
= 0 .  

 

Thus, in the variational formulation the effect of the distributed body force because of polarisation vector and electric field vector 

interaction, given by  

 

∫(𝑃𝑖𝐸𝑖,𝑗)𝛿𝑢𝑖𝑑𝑉, 

 

 is to be added. This contribution can be written in an expanded form as, 

 

 

𝜄𝑁𝐿−𝐹𝑂𝑅𝐶𝐸 = ∭𝑃𝑥
𝜕𝐸𝑥

𝜕𝑥
𝛿𝑢𝑥𝑑𝑉 + ∭𝑃𝑦

𝜕𝐸𝑥

𝜕𝑦
𝛿𝑢𝑥𝑑𝑉 + ∭𝑃𝑧

𝜕𝐸𝑥

𝜕𝑧
𝛿𝑢𝑥𝑑𝑉 + ∭𝑃𝑥

𝜕𝐸𝑦

𝜕𝑥
𝛿𝑢𝑦𝑑𝑉

+ ∭𝑃𝑦
𝜕𝐸𝑦

𝜕𝑦
𝛿𝑢𝑦𝑑𝑉 + ∭𝑃𝑧

𝜕𝐸𝑦

𝜕𝑧
𝛿𝑢𝑦𝑑𝑉 + ∭𝑃𝑥

𝜕𝐸𝑧

𝜕𝑥
𝛿𝑢𝑧𝑑𝑉 + ∭𝑃𝑦

𝜕𝐸𝑧

𝜕𝑦
𝛿𝑢𝑧𝑑𝑉

+ ∭𝑃𝑧
𝜕𝐸𝑧

𝜕𝑧
𝛿𝑢𝑧𝑑𝑉   

 

Revising the above contribution in terms of the electric displacement using  

 

  𝐷 ⃗⃗  ⃗ =  𝜀0 𝐸 ⃗⃗  ⃗ +   𝑃 ⃗⃗  ⃗ 

 

𝜄𝑁𝐿−𝐹𝑂𝑅𝐶𝐸 = ∭{(𝐷𝑥 − 𝜖0𝐸𝑥)
𝜕𝐸𝑥

𝜕𝑥
+ (𝐷𝑧 − 𝜖0𝐸𝑧)

𝜕𝐸𝑥

𝜕𝑧
}𝛿𝑢𝑥𝑑𝑉 + ∭{(𝐷𝑥 − 𝜖0𝐸𝑥)

𝜕𝐸𝑧

𝜕𝑥
+ (𝐷𝑧 − 𝜖0𝐸𝑧)

𝜕𝐸𝑧

𝜕𝑧
}𝛿𝑢𝑧𝑑𝑉  
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Using the simplified constitutive relations for the electro-elastic beam, the above expression yields:  

 

𝜄𝑁𝐿−𝐹𝑂𝑅𝐶𝐸 = ∭[{(𝜖0 − 𝜖1
𝑠)

𝜕𝜙

𝜕𝑥
+ 𝑒15𝛾𝑥𝑧}

𝜕2𝜙

𝜕𝑥2

+ {(𝜖0 − 𝜖1
∗) 

𝜕𝜙

𝜕𝑧
+ 𝑒∗𝜖𝑥}

𝜕2𝜙

𝜕𝑥𝜕𝑧
] 𝛿𝑢𝑥𝑑𝑉 + ∭[{(𝜖0 − 𝜖1

∗)
𝜕𝜙

𝜕𝑧
+ 𝑒∗𝜖𝑥}

𝜕2𝜙

𝜕𝑧2
+ {(𝜖0 − 𝜖1

𝑠)
𝜕𝜙

𝜕𝑥

+ 𝑒15𝛾𝑥𝑧}
𝜕2𝜙

𝜕𝑥𝜕𝑧
𝛿𝑢𝑧𝑑𝑉 

 

2.3.2 Contribution due to nonlinear part of stress 

It is clear that for the smart beam the nonlinear term due to stress components is   

 

 ∭𝑃𝑖 𝐸𝑙𝛿
𝜕𝑢𝑖

𝜕𝑥𝑙
𝑑𝑉   

 

𝜄𝑁𝐿−𝜎 = ∭𝑃𝑥 𝐸𝑥𝛿
𝜕𝑢𝑥

𝜕𝑥
𝑑𝑉 + ∭𝑃𝑥 𝐸𝑦𝛿

𝜕𝑢𝑥

𝜕𝑦
𝑑𝑉 ∭𝑃𝑥 𝐸𝑧𝛿

𝜕𝑢𝑥

𝜕𝑧
𝑑𝑉 + ∭𝑃𝑦 𝐸𝑥𝛿

𝜕𝑢𝑦

𝜕𝑥
𝑑𝑉 + ∭𝑃𝑦 𝐸𝑦𝛿

𝜕𝑢𝑦

𝜕𝑦
𝑑𝑉

+ ∭𝑃𝑦 𝐸𝑧𝛿
𝜕𝑢𝑦

𝜕𝑧
𝑑𝑉 + ∭𝑃𝑧 𝐸𝑥𝛿

𝜕𝑢𝑧

𝜕𝑥
𝑑𝑉 + ∭𝑃𝑧 𝐸𝑦𝛿

𝜕𝑢𝑧

𝜕𝑦
𝑑𝑉 + ∭𝑃𝑧 𝐸𝑧𝛿

𝜕𝑢𝑧

𝜕𝑧
𝑑𝑉 

 

Using the assumptions and the simplified constitutive relations can be written as:  

 

𝜄𝑁𝐿−𝜎 = ∭[{(𝜖1
𝑠 − 𝜖0 )

𝜕𝜙

𝜕𝑥
+ 𝑒15𝛾𝑥𝑧} (

𝜕𝜙

𝜕𝑥
𝛿

𝜕𝑢𝑥

𝜕𝑥
+

𝜕𝜙

𝜕𝑧
𝛿

𝜕𝑢𝑥

𝜕𝑧
)𝑑𝑉 + ∭{(𝜖1

∗ − 𝜖0)
𝜕𝜙

𝜕𝑧
+ 𝑒∗𝜖𝑥}(

𝜕𝜙

𝜕𝑥
𝛿

𝜕𝑢𝑥

𝜕𝑥

+
𝜕𝜙

𝜕𝑧
𝛿

𝜕𝑢𝑥

𝜕𝑧
)𝑑𝑉 

 

Note that these nonlinear effects occur only in the piezo layers. Inserting  iNL-FORCE and iNL-STRESS in the variational formulation 

equation for the smart electro-elastic cantilever beam with a tip load F, gives rise to:  

 

∭(𝜎𝑥
𝐿 𝛿𝜖𝑥 + 𝜎𝑥𝑧

𝐿 𝛿𝛾𝑦𝑧)𝑑𝑉 − ∭(𝐷𝑥𝛿𝐸𝑥 + 𝐷𝑧𝛿𝐸𝑧)𝑑𝑉 + 𝜄𝑁𝐿−𝐹𝑂𝑅𝐶𝐸 − 𝜄𝑁𝐿−𝜎 =  𝐹𝛿𝑤]𝑥=𝐿 

 

 

Where  

𝜎𝑥 = 𝑐∗𝜖𝑥 − 𝑒∗𝐸𝑍 

 

 𝜎𝑥𝑧 = −𝑒15𝐸𝑥 + 𝑐44𝛾𝑥𝑧. 

  

3. RESULTS AND DISCUSSION 

The smart beam considered for identifying the effect of nonlinearities is shown in Figures. Two piezo patches are embedded on the 

top and bottom faces of the aluminum core. The direction of polarization in the piezo material is along Z-direction. The interfaces 

between the piezo material and aluminum core are at equipotential and the free surface of the piezo patches is at zero potential. 

The dimensions of the beam are:  

 

Length = 100 mm      Width = 1mm 

Patch thickness = 0.127mm   Core thickness = 1.5875mm 

 

The problem of beam deformation due to an actuation voltage applied symmetrically on the upper and lower piezo patches has 

been solved. The nonlinear effects are included as augmented stiffness matrices which are updated at every iteration and the 
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iterations are performed till convergence is achieved. By neglecting the nonlinear stiffness terms, the results corresponding to linear 

actuation case are obtained.  

The variation of axial deformation, axial stress and shear stress across the thickness for an actuation voltage of 40Volt, for linear 

and non-linear cases are shown in Figures. The introduction of non-linearity in the piezo material distorts the symmetry of the stress 

distribution about the reference axis. Maximum shear stress in the non-linear case has a higher value than that corresponding to 

linear case.  

 

Table 1 Material properties of PZT-5H and Aluminium 

PZT5H (G Pa) PZT5H (C/m2) 
Al 

G Pa  

𝐶11
𝐸

 𝐶12
𝐸

 𝐶13
𝐸

 𝐶33
𝐸

 𝐶44
𝐸

 𝑒31 𝑒33 𝑒15 E 𝞶 

126 79.5 84.1 117 23 -6.5 23.3 17.0 70.3 0.345 

 

 

 

 

 

 

SMART BEAM 

 

 

 

Table 2 Variation of applied voltage with tip deflection for linear and non-linear actuation 

 APPLIED VOLTAGE 

(V) 

TIP DEFLECTION (m) 

LINEAR 

NON-LINEAR EFFECTS 

DISTRIBUTED FORCE 

BOTH 

DISTRIBUTED FORCE & 

TORQUE 
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10 0.5581682 X 10-4 0.5581683 X 10-4 0.5637581 X 10-4 

20 1.1163366 X 10-4 1.1163369 X 10-4 1.164515 X 10-4 

30 1.674505 X 10-4 1.6745058 X 10-4 1.862935 X 10-4 

40 2.2326733 X 10-4 2.2326755 X 10-4 2.834189 X 10-4 

 

 

 

 

 

 

AXIAL DEFORMATION NON LINEAR 

 

 

 

Table 3 Mid-layer voltages for linear and non-linear actuation 

Applied 

Voltage 

(V) 

Nodal span 

Location 

1 2 3 4 5 6 7 

Root   
Mid-

Span 
   

10 
Linear 5.029 5.029 5.029 5.029 5.029 5.029 5.030 

Non-Linear 5.029 5.029 5.029 5.029 5.029 5.029 5.030 

20 
Linear 10.059 10.059 10.059 10.059 10.059 10.059 10.060 

Non-Linear 10.061 10.061 10.061 10.061 10.061 10.061 10.062 

30 
Linear 15.088 15.088 15.088 15.088 15.089 15.088 15.091 

Non-Linear 15.099 15.099 15.099 15.098 15.098 15.096 15.098 

40 
Linear 20.118 20.118 20.118 20.118 20.118 20.118 20.121 

Non-Linear 20.151 20.151 20.151 20.150 20.148 20.143 20.145 

 

 



                                                                                                                      

 

 
 

ARTICLE 

P
ag

e1
0

9
 

RESEARCH 

 

 

NON LINEAR AXIAL STRESS 

 

 

 

 

NON LINEAR SHEAR STRESS 

 

Comparison of tip deflection of the smart beam under increasing actuation voltages are reproduced in table 2. The non-linear 

solutions are obtained for two cases, namely, case (i) inclusion of only non-linear distributed force terms in equilibrium equation and 

case (ii) inclusion of both the non-linear effects due to distributed force and moment. The results indicate that for the present 
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problem, the non-linear effects due to distributed force alone are negligible. However introduction of non-linear effects due to 

distributed moments (non-linear constitutive equation) increases the effect of non-linearity. The difference in the tip deflection of 

the smart beam between the linear and fully non-linear cases is increase with increase in actuation voltage. 

Table 3 shows the induced potential in the mid-layer of the piezo material along the span of the beam for both linear and non-

linear cases. The results show that for an actuation voltage of 10Volt, there is no difference in the induced potential between linear 

and non-linear cases. The difference in the induced potential is increases with increase in actuation voltage. The induced voltage for 

the non-linear case is more than that of the linear case. 

 

5. CONCLUSION 

The effect of nonlinearities due to the interaction of electric field and polarization is analyzed by solving as example problem of 

actuation of a smart beam. The results indicate that the nonlinearities show a significant influence for high values of actuation 

voltage. 
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