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ABSTRACT 

In this paper the distribution of natural waves in dissipative neodnorodnonyh flat bodies. Wave 

motion is described by linear integral-differential equations. Solving this problem, we obtain the 

relationship between the velocity of the wave and its length. The problem of this kind is of great 

interest to geophysicists in the field of engineering and construction. 
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1. Introduction 

      Many construction and engineering design work in dynamic conditions, is made up of 

deformable bodies having different viscoelastic properties [1,2,3]. In addition, an important role in 

the processes of wave elastic bodies due to play in signal processing tasks, especially in connection 

with the creation of mechanical resonators and filters [4,5,6]. The mechanisms by which the energy 

of elastic waves is converted into heat, are not entirely clear. Proposed various loss mechanisms [7 - 

11], but not one of them does not fully meet all the requirements. Probably the most important 

mechanisms are the internal friction in the form of sliding friction (or attachment, and then slip) 

and viscous losses in the pore fluids; The latter mechanism is the most significant in a highly 

permeable rocks. Other effects are likely, in general have less importance, are the loss of the heat 

generated in the compression phase of the wave motion by conduction, piezoelectric and 

thermoelectric effects and the energy for the formation of new surfaces (which plays a significant 

role only near the source). Therefore, development of a common methodology and algorithm for 

calculating wave fields dissipative inhomogeneous layered bodies, is an urgent task mechanics of 

deformable solids [12-13]. 

2. Formulation of the problem 

Suppose that in a Cartesian (x, y, z) coordinate system, the beginning and the OZ axis, a sequence 

of parallel planes (fig.1)  

Z=0, Z=h1, Z=h1+h2,……, Z=h1+h2+…+hn 

The plane Z = h1 + h2 + ... + hn, (n = 2) is called the n - m horizon Assume that the space between 

said planes filled with isotropic elastic medium, forming parallel layers. Layers 0 <z <h, 

characterized by a constant ,000 ,,  , we call zero. Wednesday is h1 + h2 + ... hn <z <h1 + h2 + ... hn 

+ hn + 1 fills the space between the n –mand the n +1 –mhorizons, characterized by a constant

,111 ,,  , will be called the n–м layer. This will always be assumed that the adjacent layers differ 

from each other by at least one of the permanent , and. In the theoretical study of the 

processes described, we assume that within each layer of wave propagation is described by the 

usual equations of the theory of elasticity. As for the conditions at the interfaces of adjacent layers, 
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it will be assumed that when passing through them are continuous components of the vector of 

elastic displacement and stress tensor. Such contact is called hard. The paper investigates the 

dynamics of dissipative inhomogeneous planar bilayer structures. 

 

 

Fig.1. Design scheme: the body in the half. 

Accounting internal friction caused by the scattering of energy in construction materials, is more 

difficult. Soft layers of multilayer structures (aggregates), as a rule, are made of materials that have 

developed rheological properties. Therefore, the dissipation of energy in the first place to be 

considered for soft layers, because it is mainly occurs during deformation of these layers. 

Mechanical systems, for which the viscoelastic properties of the elements are identical is called 

dissipative homogeneous system with different rheological characteristics - dissipative 

inhomogeneous [1,8,9]. 

     The equations of motion of the deformable layer in the absence of mass forces are [1]: 

2
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Here ),,( zуx uuuu -displacement vector points of the medium;j- material density; ui – moving 

parts; jv  - Poisson's ratio; 

z 

x  

NNN  ,,

 

y = h1+h2+…+hN 

  

111 ,, 
 

y= h1 

000 ,, 

 



                                                                                                                      

 

 
 

ARTICLE 

P
ag

e2
1

1
1
 

ANALYSIS 

)1(2

~
~;

)21)(1(

~
~

j

jj

j

jj

jj

j
v

Ev

vv

Ev

+
=

−+
=  , where 

Е
~

– modulus operator, which have the form [9,13]:  
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Ejjj dttRtEtE
0

0

~
 (2) 

( )t –arbitrary function of time; ( )−tREj –relaxation kernel; 01E –instantaneous modulus of 

elasticity; we accept the integral terms in (2) small, then the function ( ) ( ) ti Rett
 −

= , where ( )t -a 

slowly varying function of time, R -real constant. Next, using the freezing procedure [9], we note 

the relation (2) approximate species 

( ) ( )  R
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C

j ,   ( ) ( )

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0

sin  dR RjR

S

j
, respectively, the cosine and sine 

Fourier transform of the relaxation of the core material. As an example, the viscoelastic material 

take three parametric relaxation nucleus ( ) jj teAtR
t

jj

 −−
=

1
/ . On the effect of the function 

( )−tR j superimposed usual requirements integrability, continuity (except ), signs - 

certainty and monotony: 

 

u


- medium displacement vector j-th layer. 

On the border of the two bodies can specify two types of conditions: 

1. In the case of hard contact in the interface is put the condition of continuity of the relevant 

components of the stress tensor and displacement vector, i.е.  

.;

;;

)2()1()2()1(

)2()1()2()1(
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uuuu ==

== 

                    (3а) 

 If the interface is no friction, the 
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;;0; )2()1()2()1()2()1(

уухухууууу uu ====              (2,б) 

2.On the free surface is placed a condition of freedom from stress, 

i.е.               ,0;0 )1()1( == ухуу 
(2,с) 
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3. Solving methods 

Now consider the solution of the differential equation (1) - (2) for a single layer. The equation of 

motion of the displacement is reduced to the following form: 
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  (3) 

where n  - material density. The solution is found in the form of: 

  un=Un(y) eк (x-ct) ;   n = Vn(y)eк ( x-ct) ;  n =1,2, ……, N  (4) 

whereUn(y) andVn(y) – amplitude integrated vector - function; k - wave number; C = CR + iCi - 

complex phase velocity; and ω - complex frequency. 

To clarify their physical meaning, consider two cases: 

1) k = kR; С = СR +iCi, then the decision (4) has the form of a sine wave in x, whose 

amplitude decays over time; 
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2) k = kR +ikI; С = СR, then at each point x fluctuations established, but x decay. 

In both cases, the imaginary partkIorCIcharacterized by the intensity of the dissipative processes. 

Substituting (4) into (3) we obtain: 

( ) ( ) ( ) ;0222 =++++− nnnnnnnnn UCkVikUikUkU    (5) 

( ) ( ) ( ) .0222 =++++− nnnnnnnnn UCkVikUikUkU   

Thus, we have the equation (5) second-order two regions each. The problem is solved 

directly, without reducing the equation to the fourth order equation. All the arguments are for the 

layer. 

Private solutions of the system (5) is in the form 
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Where rn – constant. A homogeneous algebraic system relativeАnandВпit has a nontrivial solution if 

its determinant is equal to zero 
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nnTnnnnLn CC  =+= atη = 0 value TnLn СиC 22
are respectively the speed of 

compression and shear waves in an elastic medium [4]. Equation (6) may have four roots 

.4......,1;1,0;/1)(;/1)( 22

4,3

22

3,1 ==−=−= inCCkrCCkr TnnLnn  

As a result, we find four particular solutions of the form 
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Substituting values (rn) iat (7) findАni, Bniatrn =(rn) i. 

Expressions for the displacement are as follows: 
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Consequently, both the hard and to obtain a sliding contact set six boundary conditions 

which lead to six homogeneous equations with six unknowns C11, C12, C13, C14, C22, C24. To such a 

system of equations have a nontrivial solution, the determinant of the coefficients must be zero. 

This equation gives the dispersion equation for dissipative systems, where 

1,0),/1(;)/1( 222/122 =−=−= nCCqCCS Lnnnn  

As an example, consider the problem of distribution of natural waves in the viscoelastic layer 

at the half. 
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Hard contact. Dispersion equation has the form
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where ζ –dimensionless wave numberζ = kh,γ1=  // orλ+2μ= 

= 2 (1-ν)/(1-2ν).As a relaxation kernel viscoelastic material will take a three-parameter kernel 

( )




−

−

=
1t

Ae
tR

t

Rizhanitsena -Koltunova [13], has a weak singularity, where  ,,A -parameters of 

materials [13]. Assume the following parameters: 1,0;05,0;048,0 === A . Using the 

complex representation of the modulus of elasticity as described previously. 

The roots of the frequency equation is solved by Muller, at each iteration of the method 

applied by Muller Gaussian with the release of the main element. Thus, the solution of equation (8) 

does not require disclosure of the determinant. As an initial approximation we choose the phase 

velocity of the waves of the elastic system. For free waves in jR =0 phase velocity and wave number 

are valid values. In the calculations we take the following values: 

θ = 1/2 = 0, 75;  = 10-4 ;n = 1. 

Consider two options for a dissipative system. In the first embodiment, the dissipative system is 

structurally homogeneous. 

        Wave number ξvaries 0 – 3.  The calculation results are shown in fig.2.a. The dependence of 

the frequency and damping of the dimensionless wave number ξIt was monotonous, and the 

character according to the same frequency and damping coefficients. In the second embodiment, 

(8) 
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the dissipative system is structurally non-uniform: half-considered, the equation (8) and elastic 

parameters coincide with those adopted above. The calculation results are shown in fig.2.b. 

Frequency Dependence ξIt is the same as for the homogeneous system: corresponding curves 

coincide up to 5%. Dependencies damping coefficients of ξnon-monotonic. 

Of particular interest is the minimum value ξa fixed damping coefficient: 

δ=min (-ωI k ),  k= 1,2,…..К,   (9) 

hereδ – coefficient determining the damping properties of the system (let's call it a global damping 

coefficient). 

 

  

 

 

 

 

 

 

 

 

 

 

Fig. 2.а. Changing the complex natural frequencies of the wave number .a) Dissipative 

homogeneous mechanical system. 
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For a homogeneous system coefficient δ is entirely determined by the imaginary part of the 

first modulo complex frequency. For heterogeneous systems as coefficient δ can act imaginary 

parts of both the first and the second frequency depending on their values. "Turn the Tables" 

occurs when the characteristic value of ξ, the closest at this value of the real parts of the first and 

second frequencies. δ ratio at a specified characteristic value has a pronounced maximum. 

 

The sliding contact. Dispersion equation is similar in form to equation (8). All parameter values 

coincide with those adopted above. Figure 3a and b shows the dependence of the frequency and 

damping coefficients of the wave number ξ, respectively, for structural and homogeneous and 

heterogeneous systems. These results confirm earlier findings. Changing the parameter fromso that 

essentially dependent coefficient δ, can be achieved by varying the geometric dimensions of the 

members without altering their mechanical properties. 

 

 

 

 

 

 

 

 

 

 

Fig.2. b Change of complex natural frequencies of the wave number.  

b) Dissipative heterogeneous mechanical system; 
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(

a) Homogeneous dissipative mechanical system. 

b) the dissipative heterogeneous system. 

Fig.3. Changing the complex natural frequencies of the wave number. 
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     This opens a promising possibility of effective control damping characteristics of heterogeneous 

viscoelastic systems by changing their inhomogeneous systems with close frequencies. 

Analysis of Stoneley waves and Rayleigh. Consideringthehalf-

layerandwithdifferentcoefficientsofPoisson(ν1=0.3; ν2=0.35; rheological properties and other 

parameters coincide with those adopted above), we see that the Rayleigh wave velocity and 

attenuation wave velocity for a layer less than Stoneley wave velocity at the boundary layer section 

- half-wave if the latter exist (fig.4). 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Change С* and the wave number. 

Results of the study of structurally homogeneous and heterogeneous systems are practically the 

same. At γ/θ> 1  The speed of the shear waves layer above the speed of shear waves in the half, 

then there is only one form of vibrations. The results of calculations for the hard and sliding contact 

with the original data θ = 1.44; γ = 8; ν1 = ν = 0.25 (Other parameters coincide with those adopted 

above) are shown in fig. 5. 
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Analysis of Love waves. Consider the problem of the distribution of the Love waves in two-

layer media, taking 

un = [u(y),wn (y)]e i (αч + ωе ).            (10) 

The wave equation (1) takes the form: 2,1;02

2

2

2

2

==−
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
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+
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
nw

y

w

x

w
пn

nn

n    

  (11) 

 

 

Fig. 5. Change СR* and CI* the wave number .  

 

Suppose that the boundaryу = hfree of loads. The solution of equation (9) in the form: 

 u=0,    v = 0,   wn= W (y) e i (αx + ωt ),     (12) 

С*R1
 

С*R2 

C*I1 

C*I2 

-α* 

0,5 1 

10
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whereW1 = Asin (β1y) +Bcos (β1y),       0 <y<h 

W3=Cexp (β2y),                          y< 0; 

.
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2
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2

2

2

1

2

2

1 
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
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Fig.6. Dispersion curves Lava stress waves in a layer of visco elastic half-space(α= α H;  C= C/Co). 

 

 

The solution of equations (10) selected from the condition limits at infinity:Re= (β2) ≥ 0.  The 

integration constants A, B, C associated with the boundary conditions in the plane y = h and the 

conditions of continuity of stresses and displacements in the plane y = 0. 
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To satisfy the boundary conditions must be equal 

221

11

0

110

0)(sin)cos(





−

hh

   =   0. 

 In the numerical calculation will take  μ1/ μ2 = 0,1;  θ = 0.75,   other parameters coincide with 

those adopted above. The calculation results are shown in Fig. 6. The results show that when there 

Stoneley waves or Love waves, the observed effect does not occur. 
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As a second example, consider the dissemination of its own waves in a flat layer being in a 

deformable (viscoelastic) medium (Figure 7). 
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Fig. 7. The dispersion curves of phase velocities 1R  , 2R and the attenuation factor 1I ,

2I for dural strip in contact with the medium acrylic 

Ср1=5400 м/с; 1=0.35;Ср2=2300 м/с;        
1
=0.35;        СS1=1311м/с;        1 =0.138 кг/м3;   

Сs2=1311 м/с;          2 =0.126кг/м3. 

 

The calculation results are presented in Fig. 7. Dependence of frequency on ξ was the same as for a 

homogeneous dissipative system: the corresponding curves coincide up to 5%. As for the damping 

coefficients, their behavior has changed radically: the dependence ωI ~ ξ became nonmonotonic. 

Global damping coefficient of the specified characteristic value of ξ has a pronounced maximum. 

4. Conclusions 

• In the course of solving the problem of wave propagation in a dissipative - inhomogeneous 

media found non-monotonic dependence of the damping rate of the physical - mechanical 

and geometric parameters of the system. In dissipative heterogeneous environments according 
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to the phase velocity and the damping rate of the geometric and physical - mechanical 

parameters of the system turned out to be non-monotonic; 

•  On the basis of the numerical results obtained revealed that the possibility of separation of 

thin-walled structures of the soft layer and the effect of the resonance to speed on the size of 

the site contacts. Also taking into account the material of viscous properties of 15 - 10% 

increase in the value of the phase velocity; 

• Detected that higher phase waveforms and torsional expansion exceeds the highest possible 

speed (S) waves in an infinite medium, the group velocity never exceeds S. also found that the 

group velocity of a nondispersive medium 10 - 15% higher than the comparison dispersion 

medium. In other words, the shape of the pulses as they propagate not remains unchanged as 

homogeneous elastic bodies. 
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